## DISTRIBUTIVE PROPERTIES OF SET OPERATORS

## WILLIAM WERNICK

A set operator, designated by small letters,  $a, b, \cdots$ , is one which takes subsets  $A, B, \cdots$  of a given space S into subsets  $aA, aB, \cdots \subset S$ . A property of a set operator a is a constant relation between argument and image sets under a and is expressed in a statement of equation or inclusion, for example,  $a(A+B) = aA \cdot aB$  or  $A \subset bA$  where a, b may mean, for example, "complement" or "closure."

We investigate properties expressed by relations of the form:

$$a(Af_1B) \cdot \Re : aAf_2aB$$

where  $f_1$ ,  $f_2$  are either set sum: +, or set product:  $\cdot$ , and where  $\mathcal{R}$  is either =,  $\supset$ , or  $\subset$ . A property defined by such a relation (1) is a distributive property, but not all distributive properties can be defined by (1), for example  $a(A+B)=A\cdot aB+B\cdot aA$ , and so on.

When  $f_1, f_2$ ,  $\Re$  are given constant values, (1) becomes the statement of a specific distributive property of a. We now list them individually for reference. Properties of monotonicity and inverse-monotonicity ( $\alpha_{13}$  and  $\alpha_{14}$  below) are closely related to properties of distributivity so they are listed in the table also. (The arrow,  $\rightarrow$ , is used for implication throughout this paper.)

```
TABLE I
       a(A+B) = aA + aB
                                                                     a(A+B)=aA \cdot aB
                                                             α7:
                                                                     a(A+B) \supset aA \cdot aB
       a(A+B) \supset aA+aB
                                                             α8:
\alpha_2:
       a(A+B) \subset aA+aB
                                                                      a(A+B) \subset aA \cdot aB
                                                             αg:
\alpha_4: a(A \cdot B) = aA \cdot aB
                                                             \alpha_{10}:
                                                                     a(A \cdot B) = aA + aB
       a(A \cdot B) \supset aA \cdot aB
                                                                     a(A \cdot B) \supset aA + aB
\alpha_{\delta}:
                                                             \alpha_{11}:
       a(A \cdot B) \subset aA \cdot aB
                                                                     a(A \cdot B) \subset aA + aB
                                         A \subset B \rightarrow aA \subset aB
                               α12:
                                          A \subset B \rightarrow aA \supset aB
                                \alpha_{14}:
```

To say that a has property  $\alpha_1$  (notation  $a:\alpha_1$ ) means: "For every A, B, a(A+B)=aA+aB." These properties  $\alpha_i$  are obviously not independent, for example,  $a:\alpha_1 \rightarrow a:\alpha_2$ ,  $\alpha_3$  (which we may shorten, at our convenience, to  $\alpha_1 \rightarrow \alpha_2$ ,  $\alpha_3$ ).

Our first main question is: if we hypothesize to a a single property  $\alpha_i$ , what other properties *must* a have? This is completely answered by the following diagram of implications:

Presented to the Society, October 26, 1940; received by the editors July 18, 1944.