128. D. H. Lehmer: On Ramanujan's numerical function $\tau(n)$.

Ramanujan's numerical function $\tau(n)$ may be defined by $\sum \tau(n) x^{n-1}=\left\{\pi(1-x)^{k}\right\}^{24}$. Among several unsolved questions about $\tau(n)$ is the so-called Ramanujan hypothesis to the effect that if p is a prime $\left|\tau(p) \cdot p^{-11 / 2}\right|<2$, which Ramanujan verified for primes $p<30$. The present writer, in attempting to disprove this important hypothesis, has examined all primes $p<300$, as well as $p=571$, and finds that in all these 47 cases the hypothesis holds true. It nearly fails for $p=103$ when $\tau(103) \cdot 103^{-11 / 2}=-1.918 \cdots$. In connection with this hypothesis Rankin proved in 1939 that as $x \rightarrow \infty, x^{-12} \sum_{n \leq x} \tau(n)^{2}$ tends to a limit represented by a certain double integral extended over the fundamental region of the full modular group. In this paper a practical method is devised for evaluating this integral whose value is found to be $.0320047918814 \cdots$. Various congruence and divisibility properties of $\tau(n)$ are also discussed. For example $\tau(n)$ is composite for $1<n<7921$. (Received March 26, 1943.)
129. A. E. Ross: Positive quaternary quadratic forms representing all integers with at most k exceptions.

In this paper it is shown that there are a finite number of classes of positive quaternary quadratic forms which represent all integers with at most k exceptions. The determinants of such forms have an upper bound B_{k} depending on k. This is a generalization of the results of Ramanujan (Proc. Cambridge Philos. Soc. vol. 19 (1917) pp. 11-21), Ross (Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) p. 607) and Halmos (Bull. Amer. Math. Soc. vol. 44 (1938) pp. 141-144). Ross gives $B_{0}=112$ for the classic case and Halmos' results imply that $B_{1} \geqq 240$ in the classic case. (Received March 26, 1943.)

130. L. I. Wade (National Research Fellow): Transcendence properties of the Carlitz ψ-function.

The paper is concerned with quantities transcendental over the field $G F\left(p^{n}, x\right)$. For the Carlitz ψ-function (L. Carlitz, Duke Math. J. vol. 1 (1935) pp. 137-168) and its inverse $\lambda(t)$ the following theorem is proved. If β is algebraic (over $G F\left(p^{n}, x\right)$) and irrational and if $\alpha \neq 0$ is algebraic, then $\psi(\beta \lambda(\alpha))$ is transcendental over $G F\left(p^{n}, x\right)$. In a sense this is an analogue of Hilbert's seventh problem for the transcendence of $\alpha^{\beta}=c^{\beta \log \alpha}$ over the rational number field. (Received March 26, 1943.)

Analysis

131. L. W. Cohen: On linear equations in Hilbert space.

If the rows of the infinite matrix $A=\left\|a_{i j}\right\|$ are points in Hilbert space and $a_{i_{1}}^{i_{1} \cdots i_{m}^{m}}$ are the m-rowed determinants with elements in A, it is shown that $\operatorname{det} A_{i_{1} \cdots i_{m}} B_{i_{1} \cdots i_{m}}^{\prime}=\sum_{i_{1} \cdots j_{m}} a_{i 1}^{i_{1} \cdots i_{m} b_{1} i_{1} \cdots i_{m}}$ where $A_{i_{1} \cdots i_{m}}, B_{i_{1}} \cdots i_{m}$ are m-rowed minors of A, B respectively. The series is summed over all combinations of integers j_{1}, \cdots, j_{m} and converges absolutely. This identity is used to establish sufficient conditions in order that the linear system represented by $A x=y$ have a solution in Hilbert space for all y in that space. (Received March 24, 1943.)

132. R. J. Duffin: Some representations for Fourier transforms.

Let $\phi(x)$ be an arbitrary function and let $f(x)$ and $g(x)$ be defined by the series: $f(c x)=\sum_{1}^{\infty}(-1)^{n} \phi((2 n-1) / x) / x, g(c x)=\sum_{1}^{\infty}(-1)^{n} \phi(x /(2 n-1)) /(2 n-1)$. Then if

