V_{m} IN S_{n} WITH PLANAR POINTS ($m \geqq 3$)

N. COBURN

1. Introduction. In this paper we shall classify the m-dimensional Riemannian manifolds (V_{m}) which are imbedded in an n-dimensional space of constant curvature (S_{n}) and whose normal curvature locus consists solely of planar points ($m \geqq 3$). Under the assumption that the second fundamental tensors have principal directions, we easily prove Segre's theorem:* V_{m} in S_{n} with axial points are V_{m} in S_{m+1} or have second fundamental tensor of rank one. Our proof is not as general as Segre's since the above additional assumption is required. However, our method can be generalized to classify the V_{m} in S_{n} with planar points. This classification is accomplished by use of the ranks of any of the two second fundamental tensors, which determine the normal curvature locus, and certain of the Ricci vectors. Our principal result is: If the rank of any of these second fundamental tensors is greater than two, then V_{m} in S_{n} with planar points are (1) V_{m} consisting of $\infty^{1} V_{m-1}$ imbedded in $\infty^{1} S_{m+1}$; or (2) V_{m} consisting of $\infty^{1} V_{m-1}$ imbedded in $\infty^{1} S_{m}$; or (3) V_{m} lying in S_{m+2}.
2. Notation. Let the unit tangent vector fields of m mutually orthogonal nonisotropic congruences of V_{m} in S_{n} be denoted by

$$
\begin{array}{rlr}
i^{k}=\epsilon_{c}^{c} i^{k}, & \epsilon= \pm 1, & \kappa, \lambda, \mu=1, \cdots, n, \tag{2.1}\\
c \\
{ }_{c}^{\kappa^{d} i_{k}}=\begin{array}{c}
d \\
c
\end{array}, & a, b, c=1, \cdots, m .
\end{array}
$$

According to whether ϵ is +1 or -1 , we say that i^{k} is in the positive or negative quadric of directions, determined by the first fundamental tensor of $S_{n}\left(a_{\lambda_{\mu}}\right)$

$$
\begin{equation*}
a_{\lambda_{\mu} i_{i} i_{c}^{\mu}}^{c}=\underset{c}{\epsilon} . \tag{2.2}
\end{equation*}
$$

The subscript in (2.1) refers to the congruence (orthogonal index), the contravariant index κ to the S_{n} coordinate system, the δ to the Kronecker symbol. For the ($n-m$) mutually orthogonal unit vectors in the local E_{n-m} which is perpendicular to the local tangent E_{m} of the V_{m} at a point P, we write

$$
\begin{equation*}
i_{p}^{i^{x}} \quad p, q, r=m+1, \cdots, n . \tag{2.3}
\end{equation*}
$$

[^0]
[^0]: * Most of the references are to Schouten-Struik, Einfuhrung in die Neueren Methoden der Differentialgeometrie, vols. 1 and 2. Noordhoff, Groningen, Batavia. Hence we shall merely indicate volume and page number: vol. 2, pp. 96, 99.

