This determinant will vanish only when the points on the curve C corresponding to the values a_1 , a_2 , and a_3 lie on a straight line. When the determinant vanishes, we have f(y) = f(y'), and hence the points P and P' coincide.

If C is a straight line, the determinant vanishes identically and all curves have the closure property. If C is not cut by any straight line in more than two points, then none of the curves have the closure property.

BUREAU OF ORDNANCE, U. S. NAVY DEPARTMENT

NOTE ON HOMOGENEOUS FUNCTIONALS*

BY L. S. KENNISON

The classical formula of Euler for functions homogeneous in n variables is as follows.

Let $f(x_1, \dots, x_n)$ be a differentiable function of the *n* variables, x_1, \dots, x_n , such that

(1)
$$f(\lambda x_1, \cdots, \lambda x_n) = \lambda^p f(x_1, \cdots, x_n).$$

Then we have

(2)
$$x_1 \frac{\partial f}{\partial x_1} + \cdots + x_n \frac{\partial f}{\partial x_n} = pf(x_1, \cdots, x_n).$$

The following analog of this formula for functionals of one variable was proved by E. Freda.[†]

Let F|[f(x)]| be a functional with a Fréchet differential $\delta F = \int_0^1 F' |[f(x)]|$; $\xi | \delta f(\xi) d\xi + \sum_{i=1}^n A_i |[f(x)]| \delta f(x_i)$, where x_1 , \cdots , x_n are points of the interval (0, 1), and such that

Then

$$F \mid [\lambda f(x)] \mid = \lambda rF \mid [f(x)] \mid.$$
$$\left\{ \frac{\partial}{\partial \lambda} F \mid [f(x)(1+\lambda)] \mid \right\}_{\lambda=0} = rF \mid [f(x)] \mid.$$

Theorem 2 of this paper will be a generalization of this theorem of Freda.

The following theorem is classical.

^{*} Presented to the Society, January 19, 1932.

[†] Rendiconti dei Lincei, (5), vol. 24 (1915), p. 1035.