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This determinant will vanish only when the points on the curve 
C corresponding to the values #i, a2, and az lie on a straight line. 
When the determinant vanishes, we have ƒ (y) =f(yf), and hence 
the points P and P ' coincide. 

If C is a straight line, the determinant vanishes identically 
and all curves have the closure property. If C is not cut by any 
straight line in more than two points, then none of the curves 
have the closure property. 
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The classical formula of Euler for functions homogeneous in 
n variables is as follows. 

Letf(xi, • • • , xn) be a differentiable function of the n variables, 
Xi, - - • , xn, such that 

(1) ffaXl, ' • , X*n) = \Pf(Xl, ' ' ' , Xn). 

Then we have 

df df 
(2) Xi h ' ' ' + Xn = pf(xh • • • , Xn) . 

dx\ dxn 

The following analog of this formula for functionals of one 
variable was proved by E. Freda, f 

Let F\ [f(x)]\ be a functional with a Frêchet differential 
5F=fl

0F' | [ƒ(*)]; € | 8 / ( € ) ^ + Z W . | [ f ( * ) ] I *ƒ(*.), vihere xu 

• • • , xn are points of the interval (0, 1), and such that 

F\ [X/(*)]| = X'F | [fl*)] |. 
Then 

\^F\[f(x)(l+X)]\\ = rF | [ƒ(*)] |. 

Theorem 2 of this paper will be a generalization of this the­
orem of Freda. 

The following theorem is classical. 

* Presented to the Society, January 19,1932. 
t Rendiconti dei Lincei, (5), vol. 24 (1915), p . 1035. 


