COROLLARY 1. The mean of order p of $u_p(n+1)X_{n+1}$ and of $v_p(n)X_n$ approach zero when $n\to\infty$, for -1< x<1.

COROLLARY 2. For x = -1 the mean of order p+1 of each of the preceding expressions vanishes when $n \to \infty$. This follows from $X_n(-1) = (-1)^n$.

Now (3) is obtained at once by taking the limit of the mean of order p of (4). But the values of $S^{(0)}$, $S^{(1)}$, $S^{(2)}$ already found show that (3) holds for p=3. Hence it holds for positive integral values of p>2.

The result under (B) is obtained by expressing each $S^{(r)}$, $(r=1, 2, \dots, p)$, in terms of the sums of lower order by use of (1'), (1''), (3) and solving this system of equations for $S^{(p)}$.

When x = -1, Corollary 2 shows that the series $\sum (-1)^n n^p$ is summable (H, p+1) and a new form is obtained for its sum by putting y=2 in the formula under (B).

THE UNIVERSITY OF NEBRASKA

ERRATA

This Bulletin, volume 37 (1931), pages 759–765:

On page 759, line 12, for $P_1 \equiv P$, P_2 , \cdots read $P \equiv P_1$, P_2 , \cdots .

On page 764, line 9, second parenthesis, for (x_1x_2, x_2, x_1x_4) read (x_1x_2, x_2^2, x_1x_4) .

On page 764, line 8 from the bottom, second parenthesis, for $(z_2, z_3, \epsilon_3 z_4)$ read $(\epsilon z_2, z_3, \epsilon^3 z_4)$.

W. R. HUTCHERSON

This Bulletin, volume 39 (1933), p. 589:

Lines 13-14, omit the words: one point of inflexion; and add the sentence: A point of inflexion lies at infinity on each bisector of the angles formed by adjacent cuspidal tangents.

D. C. DUNCAN