tains the connected set $W-W \times C^{\prime}$. But since we also know that $M=W^{\prime}=\left(W-W \times C^{\prime}\right)^{\prime}+C^{\prime},\left(W-W \times C^{\prime}\right)^{\prime}=M$ and so $Z_{1}$ contains $Z_{2}$, which is impossible. Therefore $W-C$ is connected and so $W$ is the sum of two mutually exclusive connected subsets, which is a contradiction. Hence $W$ must be widely connected.

Ohio State University

## QUADRILATERALS INSCRIBED AND CIRCUMSCRIBED TO A PLANE CUBIC*

BY A. H. DIAMOND

In a paper by M. W. Haskell $\dagger$ the geometrical configurations of triangles inscribing and circumscribing a plane cubic curve have been studied by analytic methods. The purpose of this paper is to examine the properties of quadrilaterals inscribing and circumscribing a plane cubic curve by means of elliptic functions.

The coordinates of a point on the curve will be expressed in terms of Weierstrass' elliptic functions $\wp(u)$ and $\wp^{\prime}(u)$. It is known that $3 n$ points of the cubic are the points of intersection of the cubic with a curve of order $n$ if $\ddagger$

$$
\begin{equation*}
u_{1}+u_{2}+\cdots+u_{3 n} \equiv 0 \bmod \left(\omega_{1}, \omega_{2}\right) \tag{1}
\end{equation*}
$$

The values of the parameters of the vertices of the quadrilaterals are obtained from a consideration of the congruences

$$
2 u_{1}+u_{2} \equiv 0, \quad 2 u_{2}+u_{3} \equiv 0, \quad 2 u_{3}+u_{4} \equiv 0, \quad 2 u_{4}+u_{1} \equiv 0
$$

whence

$$
15 u_{1} \equiv 0
$$

or

$$
u_{1}=\frac{k_{1} \omega_{1}+k_{2} \omega_{2}}{15}
$$

[^0]
[^0]:    * Presented to the Society, November 29, 1930.
    $\dagger$ Haskell, this Bulletin, vol. 25 (1918), p. 194.
    $\ddagger$ Appell and Lacour, Théorie des Fonctions Elliptiques et Applications, Chap. 3.

