THE NORM OF A SPACE CONFIGURATION

BY L. M. BLUMENTHAL

1. Introduction. In a recent paper,* the writer has shown that attached to an ordered set of 2n points in a plane there is the lineo-linear invariant

$$2(N + iA) = \sum_{k=1}^{n} \bar{x}_{2k}(x_{2k-1} - x_{2k+1}) = \left(\frac{1}{n}\right) \sum_{i=1}^{n-1} (1 - \epsilon^{n-i}) v_i \bar{u}_i,$$

where x_k $(k = 1, 2, \dots, 2n)$ are points in the complex plane, \bar{x}_k denotes the conjugate of x_k , ϵ is a primitive *n*th root of unity, A is the area of the ordered 2*n*-gon, and the *norm* N is defined by

$$2N = -\frac{1}{2}(\delta_{12}^{2} - \delta_{23}^{2} + \cdots + \delta_{2n-1,2n}^{2} - \delta_{2n,1}^{2}),$$

with $\delta_{ij} = |x_i - x_j|$. The Lagrange resolvents[†]

$$v_{i} = \sum_{k=0}^{n-1} \epsilon^{ik} x_{2k+1}, \ \bar{u}_{i} = \sum_{k=0}^{n-1} \epsilon^{i(n-k)} \bar{x}_{2(k+1)},$$
$$(i = 1, 2, \cdots, n-1),$$

are absolute invariants under translations $y_i = x_i + b$, while the combinations $v_i \bar{u}_i$ are likewise invariant under rotations $y = tx_i$, where t is a complex number with unit modulus.

This paper extends the preceding results to S_3 , the theorems that are obtained holding, mutatis mutandis, for S_n . Denoting the 2n points by $X_i(i=1, 2, \dots, 2n)$ and calling the two sets X_{2i} , X_{2i-1} $(i=1, 2, \dots, n)$ the component *n*-points of the whole set, it is shown that the norm of the 2n-point is expressible in terms of the Lagrange resolvents of its vertices and is consequently absolutely invariant under a translation of either of its component n-points.

^{*} Lagrange resolvents in euclidean geometry, American Journal of Mathematics, vol. 49 (1927). pp. 511-522.

[†] Pascal, E., Repertorium, 2d. ed., vol. 1, p. 307.