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If now p is Fréchet interior to @ and is a limiting element of X 
a subclass of 9Î, then, by definition of Fréchet interior, limiting 
element, and i2 , @ contains an infinity of elements of £ . 
Therefore p is interior to @ in the sense of § 1. Furthermore 
if p is interior (9Î) to © in the sense of § 1, then @ contains 
an element q (distinct from $) of every subclass X of 9Î for 
which p is a limiting element. Then if p = Lnrn (distinct) 
p is a limiting element of the class [rn]. Hence @ contains 
rni distinct from p. Since p is a limiting element of the 
class obtained froïh [rn] by removing rWl (i2) it is evident that 
at most a finite number of elements of [rn] are not in ©. 
Therefore [rn] is ultimately contained in ©. 

T. H. Hildebrandt* has given a definition of interior (9Î) 
which becomes equivalent to the Fréchet interior (9Î) for 
systems ($ ; i123). This definition omits the condition that 
the sequence {rn} consist of distinct elements. If then 
p = Lnrn and rno is repeated infinitely often, in a system 
(çp . jri23^ Tn^ -. p# That rno is contained in any class © to 
which p is Fréchet interior (3Î) is evident. A restatement of 
Theorem IV for systems (ty ; Lm) gives us a generalization of 
a theorem of Hildebrandt.f 
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COMPLETE EXISTENTIAL THEORY OF SHEFFER'S 
POSTULATES FOR BOOLEAN ALGEBRAS. 

BY PROFESSOR L. L. DINES. 

(Read before the American Mathematical Society, December 30, 1913.) 

IN a recent number of the Transactions ShefferJ presented 
an elegant and concise set of five postulates for Boolean 
algebras, and proved them mutually consistent and inde­
pendent. Professor E. H. Moore§ has suggested a further 
interesting problem in connection with such sets of postulates, 
namely the determination of all general implicational relations 
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