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and after substitution of these values in KQ we find 

or making use of the extremal equation, 

Kn=~2y' le-> i r o<°-^0 

By means of theorem A, we have the result : 
For the brachistochrone problem there is no conjugate point to 

any point P lying on the same cycloid arch with P. 
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T H E following theorem is essentially equivalent to Lie's 
principal theorem concerning the integration of the differential 
equation £l(x, y, y) = 0 when it is invariant under a known 
group. As stated here, this theorem makes no use of the idea 
of a group. 

THEOREM. Given any differential equation of the form 

(1) Q(x, y, y') = 0 

which can be solved in the form 

(2) X(x,y)y'-Y(x,y) = 0; 

if %(x9 y) and n(x, y) are such functions that 

Xr,-YÇ* 0, 


