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For the cycloid

11 1 1
p° 16a*sin® 16 8 (s _ si) ~ 8ay’

8a

and after substitution of these values in I?o we find
— 1 .2
Ky = goy (204" = 3) +y},

or making use of the extremal equation,

— 1. _
K, = ~ gy i. e, K <O.
By means of theorem 4, we have the result:
For the brachistochrone problem there is no conjugate point to
any point P lying on the same cycloid arch with P.
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THE following theorem is essentially equivalent to Lie’s
principal theorem concerning the integration of the differential
equation Q(z, y, ¥') = 0 when it is invariant under a known
group. As stated here, this theorem makes no use of the idea

of a group.
THEOREM. Given any differential equation of the form
1) Qa, 9, 4)=0
which can be solved in the form
(2 X(z, y)y' — Y(@, y) = 0;

if &z, y) and n(z, y) are such functions that
Xn—YEZ£O,



