486 DEFORMATION OF SURFACES OF TRANSLATION. [June,

$$r_3 + r_2r_1 - f_3 + f_2r_1 = 0, r_2 - f_2 + r_1^2 = 0.$$

Multiply the new second column by $-f_1$ and add to the first. There results

$$D_{25} = \left| egin{array}{cccc} r_5 & r_4 & r_3 & r_2 \\ 0 & 0 & -r_1 & 1 \\ 0 & -r_1 & 1 & 0 \\ -r_1 & 1 & 0 & 0 \end{array}
ight|,$$

the eliminant of $r_5 + r_4 \rho + r_3 \rho^2 + r_2 \rho^3 = 0$, $-r_1 + \rho = 0$.

For n = 4, s = 3, D_{sn} is

$$\begin{vmatrix} b_{32} & b_{31} & b_{30} \\ b_{31} & b_{30} & 0 \\ 0 & 0 & 1 \end{vmatrix}, \quad \begin{aligned} b_{30} &= r_3, \\ b_{31} &= r_4 + r_3 f_1, \\ b_{32} &= r_4 f_1 + r_3 f_2, \end{aligned}$$

the term r_5 in b_{32} being dropped since 5>n (§ 3). Multiply the third column by $-f_1$ and $-f_2$ and add to the second and first columns, respectively. Multiply the new second column by $-f_1$ and add to the first. There results

$$D_{34} = \left| \begin{array}{ccc} 0 & r_4 & r_3 \\ r_4 & r_3 & 0 \\ -r_2 & -r_1 & 1 \end{array} \right|,$$

the eliminant of $r_4 + r_3 \rho = 0$, $-r_2 - r_1 \rho + \rho^2 = 0$. CHICAGO, December 8, 1904.

ON THE DEFORMATION OF SURFACES OF TRANSLATION.

BY DR. L. P. EISENHART.

(Read before the American Mathematical Society, February 25, 1905.)

In the January number of the Bulletin* Dr. Burke Smith states the following theorem: The only non-developable surfaces of translation which may be deformed so that their gener-

^{* &}quot;On the deformation of surfaces of translation," p. 187.