SHORTER NOTICES.

Etude de quelques surfaces algébriques engendrées par des courbes $d u$ second et $d u$ troisieme ordre. Par M. Stuyvaert, Professeur à l'Athenée Royale de Gand. (Thèse). Gand, Hoste, 1902. 72 pp .

Considering surfaces generated by a curve, plane or twisted, as a logical generalization of the ruled surface, Stuyvaert discusses surfaces generated by a conic or a twisted cubic. His style is clear and concise and he arrives at many known results in a new way and gives many new and interesting ones. The dissertation is divided into three chapters. Chapter I discusses surfaces which are generated by a plane which contains a conic having six points on a directrix curve or system of directrix curves. The first case considered is that of a single directrix C_{m}, a unicursal curve of order m. The class of this surface is determined as follows. Let S_{2} be a quadric passing through four fixed points, A, B, C, D, and cutting C_{m} in $2 m$ points, and let π be a plane through a general line d, cutting C_{m} in m points. The class of the surface will be the number of groups of six points common to the planes through d and the quadrics through A, B, C, D. The quadrics mark on C_{m} an involution $I_{5}^{2 m}$, the planes mark an involution I_{1}^{m}. The number of groups of six points common to the two is expressed by

$$
C_{1}^{2 m-5} \cdot C_{5}^{m-1}=(2 m-5) C_{5}^{m-1} .
$$

But in each of the four planes $(d A),(d B),(d C),(d D)$, there are C_{5}^{m} groups of six points situated on degraded quadrics and hence should be excluded, therefore the class is given by

$$
\nu=(2 m-5) C_{5}^{m-1}-4 C_{5}^{m} .
$$

By essentially the same method the class of surfaces whose directrix curves consist of a line and a C_{m}, a conic and C_{m}, etc., is obtained. As corollaries of the preceding theorems follow readily the determinations of the orders of surfaces generated by ∞^{1} conics which move on a system of directrices. In this connection the theorem is given : Conics whose plane passes through an axis $\alpha \beta$, and which cut five independent lines generate a surface of order eight.

