A TWO-FOLD GENERALIZATION OF FERMAT'S THEOREM.

Presented to the American Mathematical Society, February 29, 1896.

BY PROFESSOR ELIAKIM HASTINGS MOORE.

Formulation of the generalized Fermat theorem III [k+1, n; p].

In Gauss's congruence notation Fermat's theorem is:

$$\mathbf{I}_1 \qquad \qquad a^p - a \equiv 0 \pmod{p}$$

where p is any prime and a is any integer: or, otherwise expressed,

 \mathbf{I}_{i} The two rational integral functions of the indeterminate X with integral coefficients

$$X^{p}-X$$
, $\prod_{n=0}^{a=p-1}(X+a)$

are identically congruent $(\equiv) \pmod{p}$:

$$X^p - X \equiv \prod_{a=0}^{a=p-1} (X+a) \pmod{p}$$
.

We write I, thus:

I. The two forms in the two indeterminates $X_0, X_1,$

$$D[2,1;p](X_0,X_1) \equiv X_0 X_1^p - X_0^p X_1,$$

$$P[2,1;p](X_0,X_1) \equiv X_0 \cdot \prod_{a_0=p-1}^{a_0=p-1} (a_0 X_0 + X_1),$$

are identically congruent (mod p):

$$D[2,1;p](X_0,X_1) \equiv P[2,1;p](X_0,X_1) \pmod{p}$$
.

- 2. We proceed in two steps to a two-fold generalization of Fermat's theorem I3.
- II. The two forms in the k+1 indeterminates X_0, X_1, \dots, X_k

$$(1) D[k+1,1;p] (X_0, X_1, \cdots, X_k) \equiv |X_j^{e^i}| \qquad (i, j=0, 1, \cdots, N_k) \equiv |X_j^{e^i}|$$

—where the product Π^* embraces the $(p^{k+1}-1)/(p-1)$ linear forms $\sum\limits_{g=0}^{g=k} a_g X_g$ whose coefficients $a_g \ (g=0,\,1,\,\cdots,\,k)$ are integers selected from the series $0, 1, \dots, p-1$, in all possible ways, only