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This note states some results concerning asymptotic enumeration of the 
isomorphism classes of finite modules or algebras (of various types) over 
a Dedekind domain D. Proofs will be published elsewhere. 

1. Finite modules over a ring of algebraic integers. Firstly, let D be the 
ring of integers in a finite-dimensional algebraic number field K. If M is a 
finitely-generated torsion module over D, then standard structure theory 
[8], [9] and the fact that D/P is finite for every prime ideal P implies that 
M is finite in cardinal Further, if ^(D) denotes the category of all such 
modules M and a(n) = aD(n) denotes the total number of isomorphism 
classes of modules of order n in #"(/)), then a(n) is finite and "multiplicative." 

Now recall that, if ND(x) denotes the total number of ideals of norm at 
most x in D, then ND(x) = XKx + 0(xn) where XK is an explicit positive 
constant depending on K and n = 1 - 2/(1 + [K:Q]) [13]. 

(1.1) THEOREM. The function a(n) has mean value XK \\™= 2 CKW More 
precisely, Yjn^xa(n) = [^KY\?=2 CKMI* + 0(x1/2) where ÇK(s) is the Dede­
kind zeta function. 

When D is the ring Z of rational integers, 3F{D) becomes the category 
se of all ordinary finite abelian groups, and the theorem was first proved 
for this case by Erdös and Szekeres [4]. 

(1.2) COROLLARY. Let n^{D)(x) denote the total number of indecomposable 
D-modules of order at most x in ^(D). Then 

7Cj«r(D)(x) ~ x/log x as x -» 00. 

Theorems 1.1 and 2.1 follow from slightly more general results about 
certain categories. Corollaries 1.2 and 2.2 follow with the aid of an abstract 
prime number theorem, as discussed in [15]; for D = Z, see [10], [11]. 

Although it has a finite mean value, a(n) can be very large on prime 
powers: Consider a rational prime p, and define C = C(D, p) by C = aj - 1 

+ • • • + a~x where (p) = Px • • • Pm is the decomposition of (p) into 
prime ideals Pt in D, and Pt has norm pai. 
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