Advances in Differential Equations

EXISTENCE AND MULTIPLICITY RESULTS FOR A CLASS OF SCHRÖDINGER EQUATIONS WITH INDEFINITE NONLINEARITIES

DAVID G. COSTA AND HOSSEIN TEHRANI Department of Mathematical Sciences, UNLV, Las Vegas, NV 89154-4020

(Submitted by: Reza Aftabizadeh)

INTRODUCTION

In this paper we are concerned with existence and multiplicity results for a class of nonlinear Schrödinger equation of the form

(P)
$$-\Delta u + V(x)u = a(x)g(u), \qquad x \in \mathbb{R}^N,$$

where $V(x) \in C(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ and $a(x) \in C(\mathbb{R}^N)$. The nonlinear term g(u) will always be assumed to have superlinear behavior at zero, a powerlike growth at infinity, and the sign condition $g(u)u \geq 0$, for all $u \in \mathbb{R}$. Precise hypotheses will be stated in Section 1.

Regarding the weight function a(x), we consider the setup introduced in our earlier work [3]. In fact we assume that a(x) changes sign in \mathbb{R}^N , thus the indefinite character of the nonlinearity, and

(I₁)
$$\lim_{|x|\to\infty} a(x) = a_{\infty}.$$

We note that in case a(x) is positive at infinity, that is, $\lim_{|x|\to\infty} a(x) = a_{\infty} > 0$, it can be seen that Pohozaev-type identities provide nonexistence results under rather mild assumptions. Therefore we further assume

(I₂)
$$\lim_{|x| \to \infty} a(x) = a_{\infty} < 0$$

In case the Schrödinger operator $L = -\Delta + V(x) : H^2(\mathbb{R}^N) \to L^2(\mathbb{R}^N)$ is nonnegative, that is, $\sigma(L) \cap (-\infty, 0) = \emptyset$, there is a number of existence and multiplicity results for (P) under various assumptions on the weight function a(x) and the nonlinearity g(u). Of particular interest, however, is when $\sigma(L) \cap (-\infty, 0) \neq \emptyset$, so that the associated quadratic form $Q(u) = \frac{1}{2}(Lu, u)$

Accepted for publication: May 2003.

AMS Subject Classifications: 35J25, 35J20, 58E05.