J. DIFFERENTIAL GEOMETRY

85 (2010) 1-14

A RIEMANNIAN BIEBERBACH ESTIMATE

FRANCISCO FONTENELE & FREDERICO XAVIER

Abstract

The Bieberbach estimate, a pivotal result in the classical theory of univalent functions, states that any injective holomorphic function f on the open unit disc D satisfies $|f''(0)| \leq 4|f'(0)|$. We generalize the Bieberbach estimate by proving a version of the inequality that applies to all injective smooth conformal immersions $f: D \to \mathbb{R}^n$, $n \geq 2$. The new estimate involves two correction terms. The first one is geometric, coming from the second fundamental form of the image surface f(D). The second term is of a dynamical nature, and involves certain Riemannian quantities associated to conformal attractors. Our results are partly motivated by a conjecture in the theory of embedded minimal surfaces.

1. Introduction

A conformal orientation-preserving local diffeomorphism that is defined in the open unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$ and takes values into \mathbb{R}^2 can be viewed as a holomorphic function $f : D \to \mathbb{C}$. Of special interest is the case when f is univalent, that is, injective. The class S of all holomorphic univalent functions in D satisfying f(0) = 0 and f'(0) = 1 was the object of much study in the last century, culminating with the solution by de Branges [4, 22] of the celebrated Bieberbach conjecture: for any $f \in S$, the estimate

$$(1.1) |f^{(k)}(0)| \le kk$$

holds for all $k \ge 2$. Equivalently, $|f^{(k)}(0)| \le kk! |f'(0)|$ for any injective holomorphic function on D. The case k = 2, due to Bieberbach, yields the so-called distortion theorems which, in turn, imply the compactness of the class S [19, 22]. Thus, the basic estimate $|f''(0)| \le 4$ for $f \in S$, most commonly written in the form $|a_2| \le 2$ where $f(z) = z + a_2 z^2 + \cdots$, already yields important qualitative information. In particular, it follows from the compactness of S that there are constants C_k such that $|f^{(k)}(0)| \le C_k |f'(0)|$ for every $k \ge 2$ and injective holomorphic function f on D. The Bieberbach conjecture (the de Branges theorem) asserts that one can take C_k to be kk!.

Received 8/21/2008.