THE TOPOLOGY OF CERTAIN RIEMANNIAN MANIFOLDS WITH POSITIVE RICCI CURVATURE

YOE ITOKAWA

1. Let *M* be a complete connected Riemannian manifold of dimension *n*, and let Ric denote its Ricci curvature. Understanding the Ricci curvature is one of the important problems in today's geometry. In these notes, we assume that Ric $\ge n - 1$. The classical theorem of Myers then asserts that *M* is compact and has diameter $d_M \le \pi$. R. Bishop showed that the volume of *M* also satisfied vol_{*M*} \le vol_{*S*ⁿ}, where *S*ⁿ is the unit Euclidean sphere in \mathbb{R}^{n+1} , and that the equality holds only if *M* is isometric to *S*ⁿ. In [3], S. Y. Cheng proves

Theorem A. If $d_M = \pi$, then M is isometric to S^n .

It is interesting to ask to what extent these theorems can be perturbed. Our main result is

Main Theorem. Given any upper bound κ for the sectional curvature of M, there exists a constant v > 0, depending only on n and κ , such that whenever $\operatorname{vol}_M \ge (1 - v)\operatorname{vol}_{S^n}$, then M has the homotopy type of S^n .

By using some of the same methods, we can also show

Theorem B. There is a constant $\rho > 0$, depending only on *n*, such that if *M* has the injectivity radius $i_M > \pi - \rho$, then *M* is homeomorphic to S^n .

In §2 of these notes, we describe the main tools which can be used to prove these theorems. In §§3 and 4, we outline the proofs of Theorem B and Main Theorem. In §5, we describe a new geometric proof for Theorem A. Finally, we discuss some remarks and open question in §6. Details and additional applications will appear in [10]. The author would like to express gratitude to D. Gromoll for many helpful discussions.

2. Our main tool is the following observation in [7], based on an earlier work by Bishop. We denote by B(r; p) the open metric ball of radius r and center p in M, and let $\hat{B}(r)$ be an open ball in S^n of radius r. Then we have

Received May 1, 1982.