J. DIFFERENTIAL GEOMETRY 45 (1997) 1-16

BLASCHKE-SANTALÓ INEQUALITIES

ERWIN LUTWAK & GAOYONG ZHANG

Two of the most important affine isoperimetric inequalities are the Blaschke-Santaló inequality (see, e.g., Gardner [6, p. 322] or Schneider [12, p. 425]) and the classical affine isoperimetric inequality of affine differential geometry (see, e.g., Schneider [12, p. 419]). These two inequalities are closely related in that given either one of these inequalities, then by well-known methods one can be quickly deduced from the other. The aim of this article is to establish a new family of analytic inequalities and their geometric counterparts. One of the members of this family of inequalities turns out to be the Blaschke-Santaló inequality.

Let S^{n-1} denote the unit sphere in \mathbb{R}^n . Let *B* denote the unit ball (the convex hull of S^{n-1}) in \mathbb{R}^n , and write ω_n for the *n*-dimensional volume of *B*. Note that,

$$\omega_n = \pi^{n/2} / \Gamma(1 + \frac{n}{2}),$$

defines ω_n for all non-negative real n (not just the positive integers). For real $p \ge 1$, define $c_{n,p}$ by

$$c_{n,p} = \frac{\omega_{n+p}}{\omega_2 \omega_n \omega_{p-1}}.$$

For real $p \ge 1$ and continuous $f : S^{n-1} \to \mathbb{R}$, let $||f||_p$ denote the standard L_p -norm of f; i.e.,

$$||f||_p = \left\{ \int_{S^{n-1}} |f(u)|^p \, du \right\}^{1/p},$$

Received July 18, 1996. Research supported, in part, by NSF Grant DMS–9507988