J. DIFFERENTIAL GEOMETRY 41 (1995) 53–157

EQUIVARIANT IMMERSIONS AND QUILLEN METRICS

JEAN-MICHEL BISMUT

Abstract

The purpose of this paper is to construct Quillen metrics on the equivariant determinant of the cohomology of a holomorphic vector bundle with respect to the action of a compact group G. We calculate the behaviour of the equivariant Quillen metric by immersions, and thus extend a formula of Bismut-Lebeau to the equivariant case.

Let $i: Y \to X$ be an embedding of compact complex manifolds. Let η be a holomorphic vector bundle on X, and let

(0.1)
$$(\xi, v): 0 \to \xi_m \xrightarrow{v} \xi_{m-1} \to \cdots \to \xi_0 \to 0$$

be a holomorphic chain complex of vector bundles on X, which, together with a restriction map $r: \xi_{0|Y} \to \eta$, provides a resolution of the sheaf $i_* \mathscr{O}_Y(\eta)$.

Let $\lambda(\xi)$, $\lambda(\eta)$ be the complex lines which are the inverses of the determinants of the cohomology of ξ , η , i.e.,

(0.2)
$$\lambda(\xi) = (\det H(X,\xi))^{-1}, \qquad \lambda(\eta) = (\det H(Y,\eta))^{-1}.$$

Let G be a compact Lie group acting holomorphically on X and preserving Y, whose action lifts holomorphically to (ξ, v) and η . Let \hat{G} be the set of equivalence classes of complex irreducible representations of G. Then we have the isotypical splittings

(0.3)
$$H(X, \xi) = \bigoplus_{W \in \widehat{G}} \operatorname{Hom}_{G}(W, H(X, \xi)) \otimes W,$$
$$H(Y, \eta) = \bigoplus_{W \in \widehat{G}} \operatorname{Hom}_{G}(W, H(Y, \eta)) \otimes W.$$

Received October 13, 1993.