SIMPLE CLOSED GEODESICS ON CONVEX SURFACES

EUGENIO CALABI \& JIANGUO CAO

Abstract

A geodesic is said to be simple if it does not have any self-intersection point. It will be shown that the shortest closed geodesic is simple on any smooth Riemannian 2-sphere of nonnegative curvature.

We will also derive various estimates for lengths of simple closed geodesics, in terms of the diameter D, total area A, and curvature K of a given surface M^{2}. In particular, if we let L be the length of the longest simple closed geodesic on a smooth Riemannian sphere of curvature $0 \leq K \leq 1$, then $2 D \leq L \leq A / 2$. Furthermore, equality $L=A / 2$ holds if and only if M^{2} is isometric to the unit sphere.

Finally, if M^{2} is a Riemannian sphere with nonnegative curvature, then we find that the isoperimetric inequality $A \leq 8 D^{2} / \pi$ is useful.

Introduction

The purpose of this note is to study simple closed geodesics on compact oriented convex surfaces. A geodesic γ is said to be simple if γ has no self-intersections. In what follows, all geodesics are assumed to be nontrivial. Hence, any point curve will not be counted as a closed geodesic. If a Riemannian surface M^{2} is homeomorphic to the two-sphere S^{2} and if M^{2} has nonnegative sectional curvature, then M^{2} is called a convex surface.

First, we would like to find out which closed geodesics are simple on a given surface. The following theorem gives a partial answer.

Theorem D. If g is a C^{3} smooth metric on a two-sphere S^{2} with nonnegative curvature, then any nontrivial closed geodesic of the shortest length is simple.

In Theorem D , we only consider the C^{3} smooth metric g, since there are examples of nonsmooth metrics on a two-sphere S^{2} in which the shortest geodesics are not simple. For instance, the bi-equilateral triangle (two

[^0]
[^0]: Received January 26, 1990 and, in revised form, October 23, 1990. The first author was supported in part by National Science Foundation grant DMS 87-02359, and the second author by National Science Foundation grant DMS-8610730 at the Institute for Advanced Study.

