A CONSTRUCTION OF STABLE BUNDLES ON AN ALGEBRAIC SURFACE

DAVID GIESEKER

1. Let X be a smooth projective algebraic surface over C and let H be an ample divisor on X. We recall that a bundle \mathscr{E} of rank two and $c_1(\mathscr{E}) = 0$ is H-stable (in the sense of Mumford-Takemoto) if whenever \mathscr{L} is a line bundle on X which admits a nonzero map to \mathscr{E} , then we have $(c_1(\mathscr{L}) \cdot H) < 0$. In this paper, we will consider the problem of constructing stable bundles \mathscr{E} on X of rank two with $c_1(\mathscr{E}) = 0$ and $c_2(\mathscr{E})$ a prescribed number. From work of Donaldson [1], this question is a special case of the following: When does a principal SU(2) bundle on a four dimensional Riemannian manifold admit an irreducible self dual connection? In this guise, the problem has been studied by Taubes [4]. There has also been some work on higher dimensional manifolds by Uhlenbeck and Yau. The basic goal is to give conditions on the topology of X so that stable bundles \mathscr{E} of the type considered exist with $c_2(\mathscr{E})$ a given integer. The topological invariant of interest here is $h^0(X, \mathcal{O}(K))$, the number of holomorphic two forms on X. Throughout the paper, we will use h^0 as an abbreviation for $h^0(X, \mathcal{O}(K))$. [r] is the greatest integer in r.

Theorem 1.1. If $n \ge 4([h^0/2] + 1)$, then there is an H-stable bundle \mathscr{E} on X of rank two with $c_1(\mathscr{E}) = 0$ and $c_2(\mathscr{E}) = n$.

Theorem 1.2. If $h^0 > 1000$ and $n > (3/2)h^0 + 6$, then there is an H-stable bundle \mathscr{E} on X of rank two with $c_1(\mathscr{E}) = 0$ and $c_2(\mathscr{E}) = n$.

We note that Taubes constructs bundles of the above type for $n \ge (8/3)h^0$ + 2. Our methods are modeled on Taubes' methods, namely both methods are degeneration theoretic. My main motivation for this paper was to see Taubes' argument is an algebro-geometric setting. Actually, the argument we will use is somewhat different than Taubes'.

One's first idea in attacking this problem is to construct a torsion free coherent *H*-stable sheaf \mathcal{F} on *X* and to prove that \mathcal{F} can be deformed to a locally free sheaf. However, we have adopted a different but related approach

Received March 25, 1986 and, in revised form, November 26, 1986. Partially supported by NSF Grant MCS83-01597.