THE KODAIRA DIMENSION OF THE MODULI SPACE OF CURVES OF GENUS 15

MEI-CHU CHANG & ZIV RAN

0. Introduction

The purpose of this paper is to prove that the moduli space \mathcal{M}_{15} of curves of genus 15 has Kodaira dimension $\kappa = -\infty$, i.e. that $H^0(\mathcal{M}_{15}, nK_{\mathcal{M}_{15}}) = 0$ for all n > 0.

We recall briefly the current state of affairs regarding the structure of \mathcal{M}_g : \mathcal{M}_g is unirational (in particular, has $\kappa = -\infty$) for $g \le 13$ ([2], [4], [5], [13]), has $\kappa \ge 1$ for all $g \ge 23$, and is of general type for $g \ge 24$ ([6], [8], [9]).

Our proof is based on an analysis of a particular divisor $D \subset \overline{\mathcal{M}}_{15}$, namely

D =some component of the locus of curves carrying a g_{14}^3 .

We show that D is unirational. Moreover, for some rational curve $F \subset D$ which is a member of a family of rational curves "filling up" D, we show that the intersection numbers

(*)
$$D \cdot F > 0$$
, while $F \cdot K_{\mathcal{M}_{15}} < 0$.

As is easily seen, this implies $\kappa(\mathcal{M}_{15}) = -\infty$.

Our analysis of D is based on a correspondence

$$\mathcal{N} \leftarrow \rightarrow \mathcal{H} \longrightarrow \mathcal{M}_{15}$$

where \mathcal{H} is the closure of some component of the Hilbert scheme of nonsingular curves of genus 15 and degree 14 in \mathbf{P}^3 , and $\mathcal{H} \longrightarrow \mathcal{M}_{15}$ is the natural rational map. On the other hand, essentially, $\mathcal{N} =$ space of 4×9 matrices

$$A = \left(\underbrace{\begin{bmatrix} L & Q \\ \hline 8 & 1 \end{bmatrix}} \right),$$

Received November 18, 1985. The first author was partially supported by a Rackham fellowship and the second was partially supported by the National Science Foundation.