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MULTIPOLE POTENTIALS FOR SU(n) and SO(n)

WOODY LICHTENSTEIN

1. It is of physical interest to understand the symmetry properties of
combinations of objects with known symmetries. A well-known elementary
example is the Maxwell-Sylvester analysis of electric potentials generated by
finite configurations of point charges [1]. In Euclidean R® with coordinates x,
y, zand r = (x% + y? + z2)/2 one can choose units so that the potential from
a single point charge at the origin is 1 /7. For a dipole centered at 0 with axis of
length a aligned along the x-axis, the potential at large distances from the
origin is well-approximated by a(9/dx)(1/r). Similarly a configuration of 4
charges
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as in Fig. 1 generates a quadrupole potential which is a multiple of
92/dydx(1/r). In general, associated to any polynomial p there is a multipole
potential M(p) = ap(l /r) where 3, is the constant coefficient differential
operator corresponding to p via the Euclidean metric. Since 1/r is harmonic,
away from its singularity at 0, M( p) = 0 if p is a multiple of r?, and M( p) is
always harmonic. In addition, every polynomial may be written as p = h + gr?
with 4 harmonic [6] so that M may be viewed as a mapping (hereafter referred
to as the multipole mapping) from harmonic polynomials to singular harmonic
functions.

In order to study objects with more complicated symmetry than the spheri-
cally symmetric point charge, one can replace Euclidean R® with the Lie
algebra g of a compact simple Lie group G. Then G acts on g via the adjoint
representation, preserving the positive definite metric B, where —B is the
Killing form. Orbits of maximal dimension will be said to be regular; all other
orbits will be said to be singular. There is an invariant polynomial Q on g (for
8u(n), Q is just the discriminant of the characteristic polynomial) which
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