A CHARACTERIZATION OF THE 3RD STANDARD IMMERSIONS OF SPHERES INTO A SPHERE

HISAO NAKAGAWA

Dedicated to Professor Shigeru Ishihara on his 60th birthday

Introduction

Let M and \overline{M} be complete connected Riemannian manifolds of dimension $n \geq 2$ and n + p respectively. Hong [3] introduced a notion of planar geodesic immersions as follows: An isometric immersion f of M into \overline{M} is called a *planar geodesic immersion* if each geodesic on M is locally mapped under the immersion into a 2-dimensional totally geodesic submanifold of \overline{M} . Planar geodesic immersions of M into an (n + p)-dimensional sphere $S^{n+p}(c)$ of constant curvature c have been completely classified by Little [4] and Sakamoto [9] independently, who stated that M is a compact symmetric space of rank one, and f is rigid to the 2nd or 1st standard immersion according as M is a sphere or not. In particular, concerning with isotropic immersions which are introduced by O'Neill [8], Sakamoto proves that the following properties are equivalent:

(1) f is nonzero constant isotropic and parallel,

(2) f is planar geodesic,

(3) for any geodesic γ on $M, f \circ \gamma$ is a circle on \overline{M} .

On the other hand, minimal immersions of compact symmetric spaces into a sphere have been investigated by Wallach [11]. Let M = G/K be a compact symmetric space where the isotropy action of K is irreducible, and let Δ be the Laplacian operator for (M, \langle , \rangle) , where \langle , \rangle is some G-invariant Riemannian structure up to scalar multiple. Let V_{λ} be an eigenspace with an eigenvalue λ of Δ , and for any real-valued functions g_1 and g_2 on M, let $(g_1, g_2) = \int_M g_1 g_2 dM$. Then V_{λ} is a vector space over **R** endowed with the inner product (,). For each nonzero eigenvalue λ , let $\{g_1, \dots, g_{q+1}\}$ be an orthonormal basis of V_{λ} , where

Received March 27, 1981.