ALMOST FLAT MANIFOLDS

M. GROMOV

1. Introduction

1.1. We denote by V a connected n-dimensional complete Riemannian manifold, by d = d(V) the diameter of V, and by $c^+ = c^+(V)$ and $c^- = c^-(V)$, respectively, the upper and lower bounds of the sectional curvature of V. We set $c = c(V) = \max(|c^+|, |c^-|)$.

We say that V is ε -flat, $\varepsilon \geq 0$, if $cd^2 \leq \varepsilon$.

1.2. Examples.

- a. Every compact flat manifold is ε -flat for any $\varepsilon \geq 0$.
- b. Every compact nil-manifold possesses an ε -flat metric for any $\varepsilon \geq 0$. (A manifold is called a nil-manifold if it admits a transitive action of a nilpotent Lie group; see 4.5.)

The second example shows that for $n \ge 3$, $\varepsilon > 0$ there are infinitely many ε -flat *n*-dimensional manifolds with different fundamental groups.

- **1.3.** Define inductively $ex_i(x) = \exp(ex_{i-1}(x))$, $ex_0(x) = x$, and set $\hat{\epsilon}(n) = \exp(-ex_j(n))$, where j = 200. (We are generous everywhere in this paper because the true value of the constants is unknown.)
- **1.4.** Main Theorem. Let V be a compact $\hat{\varepsilon}(n)$ -flat manifold, and π its fundamental group. Then:
 - (a) There exists a maximal nilpotent normal divisor $N \subset \pi$;
 - (b) ord $(\pi/N) \leq ex_3(n)$;
 - (c) the finite covering of V corresponding to N is diffeomorphic to a nilmanifold.

Corollary. If V is $\hat{\epsilon}(n)$ -flat, then its universal covering is diffeomorphic to R^n . If V is $\hat{\epsilon}(n)$ -flat and π is commutative, then V is diffeomorphic to a torus.

- 1.5. Manifolds of positive and almost positive curvature. For such manifolds one expects the properties (a) and (b) from Main theorem 1.4, but we are able to prove only the following:
- (i) If V is a manifold of nonnegative sectional curvature ($c^- \ge 0$), then its fundamental group π and every subgroup of π can be generated by 3^n elements.
- (ii) If $d(V) \leq \mathcal{D}$, $c^-(V) \geq -K$, $K \geq 0$, then π can be generated by $N \leq 3^n ex_2(nK\mathcal{D}^2)$ elements; if π is a free group and $K\mathcal{D}^2 \leq \hat{\epsilon}(n)$, then π is generated by one element.