ESTIMATES OF THE LENGTH OF A CURVE ## B. V. DEKSTER In this article we establish some upper bounds for the length of a curve γ lying in a convex region T of an n-dimensional Riemannian space. The results obtained here have the character of a comparison theorem of the following type. Let k_s , κ be respectively the minimum values of the sectional curvature in T and of the normal curvature of the boundary of T. Under the condition that $k_s > -\kappa^2$, one can assign to the region T a circle T_0 in a k_s -plane (a two-dimensional sphere, plane or hyperbolic plane of curvature k_s) whose boundary has the geodesic curvature κ . Then, if the maximum curvature ξ of γ is less than κ , the length of γ does not exceed the length of the longest arc contained in T_0 , having constant curvature ξ . (See the corollary of Theorem 1 of \S 1.) The question on estimates of the length of a curve a in a region on a twodimensional surface was explored by A. D. Aleksandrov and V. V. Strel'cov in 1953 (see [1]). The estimates obtained in [1] contain some integral characteristics of the curve and the region. Their estimates and ours (when n = 2) do not follow from one another. The plan of the proof of inequality (1.1) and Lemma 4 was discussed with J. D. Burago who reported to the author a convenient version of the Rauch theorem connected with Γ -Jacobi field, where Γ is a submanifold. The author thanks J. D. Burago for his attention and help. ## 1. The basic construction and the results In *n*-dimensional Riemannian space M, $n \ge 2$ (of regularity class C^4) we consider a connected region which has a compact closure T and is bounded by a nonempty, possibly disconnected regular hypersurface Γ (of class C^4). The surface Γ divides a sufficiently small ball neighborhood of any of its points into two components; we suppose that only one of them belongs to T. (Instead of this we could suppose that T is the image under an immersion of some connected compact n-dimensional manifold with a smooth edge into M.) Let the boundary Γ of the region T be strictly convex in the following sense: all the normal curvatures of Γ on the side of the interior normal are not less than some positive κ . Finally, let us suppose that in the compact region T the Received March 26, 1975, and, in revised form, October 29, 1975. This research was supported by NRC Grant A-2338 (awarded to Professor H. S. M. Coxeter).