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Introduction

The formula for the first variation, with fixed boundary, of the volume inte-
gral for a hypersurface Mn in Euclidean (n + l)-space En+1 is well-known. It

is, [4, p. 178], δ I 1 dV = — n iσ^N- ξ)dV, where σx is the first mean curva-
M M

ture, iVis the unit normal, and ξ is the deformation vector. Recently this clas-
sical formula has been generalized by several mathematicians including Pinl
and Trapp [10] and the author [12]. In [12] we show that if σr9 r = 0 ,1, ,

n, denotes the r-th mean curvature function, then δ I σrdV= — (n — r)

M

• I 0r+i(N, ξ)dV. This is shown in [10] when r = 1 or n. We prove similar
M

formulas in [12] for submanifolds of arbitrary codiiίiension when r is even.
The results of [10] and [12] for hypersurfaces are proved by Rund [13] in a
more general setting. The object of the present paper is to study the variation

of I f(S19 , Sn)dV, where M is a hypersurface in a space form Nn+ι(c) of

in-

curvature c, Sr = C?σr is the r-th elementary symmetric function of the prin-

cipal curvatures ( Q being the binomial coefficient), and / is any smooth func-

tion. If c = 0, we also consider I f(S19 ,Sn,P, Q)dV, where P is the sup-
M

port function, and 2Q is the square of the length of the position vector. Many
of our results could be derived from the theory in [13] but it appears that be-
cause we study a less general case here our methods are more elementary than
those of [13].

We begin by deriving the formula for the first variation of our integral as
well as the formula for the second variation in those cases (see above) studied
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