THE FOUR-VERTEX THEOREM IN HYPERBOLIC SPACE

CURTIS M. FULTON

Let $e_{i}, i=1,2,3$, be the natural frame field on Minkowski 3 -space and ${ }^{\prime} D$ be the connection such that ${ }^{\prime} D_{V} W=\left(V W^{i}\right) e_{i}$. Using the metric \langle,$\rangle of the$ 3 -space which has one minus sign, the hyperbolic plane is represented by $\langle x, x\rangle=-1$. Thus, x is a unit normal of the latter surface and we see that ${ }^{\prime} D_{V} x=V$. Denoting by D the induced connection on the hyperbolic plane we have for its tangent vectors

$$
\begin{equation*}
{ }^{\prime} D_{V} W=D_{V} W+\langle V, W\rangle x . \tag{1}
\end{equation*}
$$

On account of (1) we find $R(U, V) W=\dot{-}\langle V, W\rangle U+\langle U, W\rangle \dot{V}$, and hence the curvature of our surface is indeed -1 .
If T and N designate the unit tangent and normal of a curve in the hyperbolic plane we know that $D_{T} T=\kappa N$ and $D_{T} N=-\kappa T$. Now because of (1) ' $D_{T} T$ $=\kappa N+x$. But ${ }^{\prime} D_{T} T={ }^{\prime} \kappa^{\prime} N$, where ${ }^{\prime} \kappa$ is the space curvature and ${ }^{\prime} N$ the space normal to the curve. We therefore record for later reference

$$
\begin{equation*}
\left({ }^{\prime} \kappa\right)^{2}=\kappa^{2}-1 . \tag{2}
\end{equation*}
$$

Also, if s stands for arc length we infer from (1) that

$$
\begin{equation*}
D_{T} N=N^{\prime}(s)=D_{T} N=-\kappa T=-\kappa x^{\prime}(s) . \tag{3}
\end{equation*}
$$

Through the two vertices which an oval necessarily has we draw a straight line whose equation is $\langle c, x\rangle=0$. Then with all integrals taken around the oval we conclude in the usual manner with the aid of (3) that

$$
\oint\langle c, x\rangle \kappa^{\prime}(s) d s=-\oint\left\langle c, x^{\prime}(s)\right\rangle \kappa d s=\oint\left\langle c, N^{\prime}(s)\right\rangle d s=0 .
$$

This establishes the essence of the proof due to Herglotz [2, p. 201].
We now apply our methods to hyperbolic 3 -space. In the imbedding Minkowski 4-space we see that $\left(^{\prime} \kappa\right)^{2}=\left\langle T^{\prime}(s), T^{\prime}(s)\right\rangle$ is equivalent to

$$
\begin{equation*}
\left(^{\prime} \kappa\right)^{2}=\left(\left\langle x^{\prime}, x^{\prime}\right\rangle\left\langle x^{\prime \prime}, x^{\prime \prime}\right\rangle-\left\langle x^{\prime}, x^{\prime \prime}\right\rangle^{2}\right) /\left\langle x^{\prime}, x^{\prime}\right\rangle^{3}, \tag{4}
\end{equation*}
$$

where the primes indicate differentiation with respect to some parameter u.

[^0]
[^0]: Received August 21, 1969.

