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A GENERALIZATION OF PARALLELISM IN
RIEMANNIAN GEOMETRY; THE C~ CASE

ALAN B. PORITZ

1. Introduction

Let g: N*—M™ be a smooth (C* or C*) immersion of riemannian mani-
folds. It is not assumed that the immersion is isometric. A smooth vector
bundle map G: T(N) — T(M) between the tangent bundles will be called a
tangent bundle isometry (T. B. 1.) along g provided that the fibers T(N)(n) =
N,, are mapped isometrically by G into the fibers T(M)(g(n)) = M, ,,. More
generally, let E be a euclidean vector bundle over N, F be a euclidean vector
bundle over M, and G: E — F; then G will be called a vector bundle isometry
along g if G maps the fibers E(n) isometrically into the fibers F(g(n)). Let I/ be
the covariant derivative on M, and let G: T(N) — T(M) be a T.B.I. along g:
N? — M™. The normal bundle to G is the (im — p)-dimensional vector bundle
G+ (over N) whose fiber over ne N is the orthogonal complement, | G(N,),
to G(N,) in M,,,,. The second fundamental form of G, 1l;: G+ — Hom (T(N),
T(N)) is a vector bundle map defined in the following manner. If v ¢ | G(N,)
and x,yeN,, extend y to a vector field Y on N in some neighborhood of »
and put

()%, >, = — <Vdg(x)G(Y)>v>y(n) .

Since F is a metric connection, the definition is independent of the choice of
Y. A T.B.1. G is parallel if traceoll;: G+ — R is the zero function.
Three pieces of evidence in support of this terminology were given in [2].
First, suppose that y: (a,b) — M is a smoothly immersed curve, and let
d/dt:(a, b) — T(a, b) be the standard unit vector field on (a, b). Then the
formula

G(dit(t)) — Y@, teab),

establishes a bijective correspondence between the set of T.B.I.s G along 7 and
the set of unit vector fields Y along 7. Under this correspondence the parallel
T.B.L.s are paired with the parallel unit vector fields.
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