J. DIFFERENTIAL GEOMETRY 4 (1970) 37-51

A CLASS OF SCHUBERT VARIETIES

YUNG-CHOW WONG

1. Introduction

Recently, the author proved that in a real, complex or quaternionic Grassmann manifold provided with an invariant metric, the minimum locus is a Schubert variety and the conjugate locus is the union of two Schubert varieties (cf. [7], [8]). The purpose of this paper is to study these Schubert varieties in detail.

Let F be the field R of real numbers, the field C of complex numbers, or the field H of real quaternions, F^{n+m} $(n \ge 1, m \ge 1)$ an (n + m)-dimensional left vector-space over F provided with a positive definite hermitian inner product, and $G_n(F^{n+m})$ the Grassmann manifold of n-planes in F^{n+m} . The Schubert varieties which we shall study are defined by

$$V_l = \{ \mathbf{Z} \in G_n(F^{n+m}) \colon \dim (\mathbf{Z} \cap \mathbf{P}) \ge l \},\$$

where **P** is a fixed p-plane in F^{n+m} , $0 , and l is a nonnegative integer. It is easy to see that <math>V_l = G_n(F^{n+m})$ if $l = \max(0, p - m)$, and V_l is empty if $l > \min(n, p)$.

Let $W_i = V_i \setminus V_{i+1}$ and let k be an integer such that max $(1, p - m + 1) \le k \le \min(n, p)$. Then

$$V_k = W_k \cup W_{k+1} \cup \cdots \cup W_{\min(n,p)}.$$

Roughly speaking, our main result is:

 V_k is the disjoint union of a Grassmann manifold $W_{\min(n,p)}$ (which reduces to a point if p = n) and $\min(n, p) - k$ "tensor" bundles $W_l(k \le l \le \min(n, p) - 1)$ whose base space is $G_l(F^p) \times G_{n-l}(F^{n+m-p})$, whose standard fiber is the tensor product $(F^{n-1})^* \otimes F^{p-1}$ of an (n - l)-dimensional right vector space and a (p - l)-dimensional left vector space, and whose group is the tensor product $GL(n - l, F) \otimes GL(p - l, F)$.

In §2, we describe a covering of $G_n(F^{n+m})$ by coordinate neighbourhoods. In §3, we prove that each V_i is a Schubert variety and obtain the local equations of V_i in a coordinate neighbourhood in $G_n(F^{n+m})$, which show that V_{i+1} is the singular locus of V_i . In §4, we obtain a covering of the manifold W_i

Received March 18, 1969, and, in revised form, May 19, 1969.