TOKYO J. MATH. Vol. 1, No. 1, 1978

On Bounded Solutions of $x^{\prime\prime} = t^{\beta} x^{1+\alpha}$

Tosiya SAITO

Keio University

 \S 1. In this paper, we consider a second order nonlinear differential equation

$$(1) x'' = t^{\beta} x^{1+\alpha} ('=d/dt)$$

where α and β are real numbers and $\alpha > 0$. This equation includes, as its special case, the equation

$$x'' = t^{1-m} x^m$$
, $1 < m < 3$,

which is known as Emden's equation [1].

The solutions of (1) considered here are those which assume real values for real t. Therefore, for any given α and β , t^{β} and $x^{1+\alpha}$ must be regarded as representing real-valued branches. So it is quite natural to assume that

(1) the domain in which the equation (1) is considered is

 $G: 0 < t < \infty$, $0 \leq x < \infty$,

(2) $x^{1+\alpha}$ and t^{β} represent their nonnegative-valued branches in G.

The purpose of the present paper is to show that the equation (1) has a one-parameter family of (positive) bounded solutions if β satisfies a certain condition. Here, by a bounded solution, we mean a solution x(t) such that x(t) and x'(t) are both bounded for $0 < t < \infty$.

§ 2. Let x(t) be a bounded solution of (1). Since

$$x^{\prime\prime}(t) = t^{\beta}(x(t))^{1+\alpha} \geq 0$$

in G by our assumptions given at the outset, x'(t) is a nondecreasing function of t. So if x'(a)>0 for some a>0, we have

 $x'(t) \ge x'(a)$ for $t \ge a$.

Received March 1, 1978