On Bounded Solutions of $\boldsymbol{x}^{\prime \prime}=\boldsymbol{t}^{\boldsymbol{\beta}} \boldsymbol{x}^{1+\alpha}$

Tosiya SAITO

Keio University
§ 1. In this paper, we consider a second order nonlinear differential equation

$$
\begin{equation*}
x^{\prime \prime}=t^{\beta} x^{1+\alpha} \quad\left({ }^{\prime}=d / d t\right) \tag{1}
\end{equation*}
$$

where α and β are real numbers and $\alpha>0$. This equation includes, as its special case, the equation

$$
x^{\prime \prime}=t^{1-m} x^{m}, \quad 1<m<3,
$$

which is known as Emden's equation [1].
The solutions of (1) considered here are those which assume real values for real t. Therefore, for any given α and β, t^{β} and $x^{1+\alpha}$ must be regarded as representing real-valued branches. So it is quite natural to assume that
(1) the domain in which the equation (1) is considered is

$$
G: 0<t<\infty, \quad 0 \leqq x<\infty,
$$

(2) $x^{1+\alpha}$ and t^{β} represent their nonnegative-valued branches in G.

The purpose of the present paper is to show that the equation (1) has a one-parameter family of (positive) bounded solutions if β satisfies a certain condition. Here, by a bounded solution, we mean a solution $x(t)$ such that $x(t)$ and $x^{\prime}(t)$ are both bounded for $0<t<\infty$.
§ 2. Let $x(t)$ be a bounded solution of (1). Since

$$
x^{\prime \prime}(t)=t^{\beta}(x(t))^{1+\alpha} \geqq 0
$$

in G by our assumptions given at the outset, $x^{\prime}(t)$ is a nondecreasing function of t. So if $x^{\prime}(a)>0$ for some $a>0$, we have

$$
x^{\prime}(t) \geqq x^{\prime}(a) \quad \text { for } \quad t \geqq a .
$$

[^0]
[^0]: Received March 1, 1978

