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Let A(n) be the Liouville function defined as Mn)=(—1)*, where v is
the number of prime factors of a positive integer m, multiple factors
being counted according to their multiplicity. Thus M1)=1, AM2)=—1,
AB)=—1L M4)=1, AB)=—1, M6)=1, A (T)= —1L M8)=—1, M9 =1, v(10)=
1,---.

We put

Liz)= gx(n) .

In this paper we assume x to be a positive integer. Thus L(1)=1, L(2)=
0, L(3)=—1, L(4)=0, L(5)=—1, L(6)=0, L(T)=—1, L(8)=—2, L(9)=—1,
L(10)=0, - --.

The object of this note is to report some numerical results obtained
by the author on L(x), x<10°, especially on how L(x) changes its sign as
« increases from 1 to 10°.

For convenience we divide the integers 1—10° into subregions each
consisting of 10000 consecutive integers.

1—10000. In this region, L(x)=0 only for x=2, 4, 6, 10, 16, 26, 40, 96,
586; L(x)>0 only for z=1.

10001 —906150000. Always L(z)<0.

906150001 —906160000. L(x)=0 for 54 values of x, the first of which
is 906150256; L(x)>0 for 1529 values of x, the first of which is 906150257.

906160001 —906180000. Always L(x)<0 ~

906180001 —906190000. L(x)=0 for 16 values of ; L(z)>0 for 9612
values of «.

906190001 —906200000. L(x)=0 for 75 values of x; L(x)>0 for 7784
values of . :

906200001 —906210000. L(x)=0 for 22 values of x; L(x)>0 for 9643
values of z.

Received March 5, 1980



