Tokyo J. Math. Vol. 8, No. 2, 1985

On Stable Ideals

Kazuji KUBOTA

The National Defense Academy (Communicated by Y. Kawada)

Introduction

Let A be a d-dimensional Cohen-Macaulay semi-local ring. We say A is equi-dimensional, if $\dim(A_{\mathcal{M}})=d$ for all maximal ideals M of A, or if A is a Macaulay ring of Nagata [3]. The length of an A-module E will be denoted by $\checkmark(E)$ or $\checkmark_{A}(E)$ to avoid ambiguity.

Sally proved in [5], [6], [7], and [8] that a *d*-dimensional Cohen-Macaulay local ring A with its maximal ideal M and multiplicity e, has the maximal embedding dimension e+d-1, if and only if the Hilbert-Samuel function $\swarrow(A/M^{n+1})$ of A equals a polynomial

$$P(n) = e\binom{n+d-1}{d} + \binom{n+d-1}{d-1}$$

for all $n \ge 0$. In fact, more was proved in [8]: For A to have the maximal embedding dimension, it is sufficient that the above P(n) is known to be the Hilbert-Samuel polynomial of A, or $\angle(A/M^{n+1}) = P(n)$ for all large n. Our previous work [1] contains an extension of the first assertion: Let I be an open ideal of an equi-dimensional Cohen-Macaulay semi-local ring A of dimension d, then

$$\ell(I/I^2) = e + (d-1)\ell(A/I)$$
 ,

if and only if the Hilbert-Samuel function of $I \swarrow (A/I^{n+1})$ equals a polynomial

$$Q(n) = e\binom{n+d-1}{d} + \epsilon(A/I)\binom{n+d-1}{d-1}$$

for all $n \ge 0$, where *e* is the multiplicity of *I*. In this paper, we shall show that the above conditions for *I* will be satisfied, if we know that Received September 10, 1984