Periodic Solutions on a Convex Energy Surface of a Hamiltonian System

Kiyoshi HAYASHI

Keio University

Introduction

Let $p = (p_1, \dots, p_n)$, $q = (q_1, \dots, q_n)$ be points of \mathbb{R}^n and write $z = (p, q) \in \mathbb{R}^{2n}$. We consider a Hamiltonian system of $H \in C^2(\mathbb{R}^{2n}, \mathbb{R})$

$$\dot{p} = -H_q , \quad \dot{q} = H_p$$

or equivalently

$$\dot{z}\!=\!JH'(z)$$
 , $J\!=\!\begin{pmatrix} 0 & -I \ I & 0 \end{pmatrix}$,

with I being the identity in \mathbb{R}^n .

On any compact energy surface for classical Hamiltonian, that is, H="kinetic energy"+"potential", we have at least one periodic solution of (H) [6] [5].

For any star-shaped energy surface, there exists at least one periodic solution of (H) on it [7].

For a convex energy surface, Ekeland and Lasry [3] found n periodic solutions on it and Ambrosetti-Mancini [2] extended it to the following.

We define $[s]_{+}=[s]_{-}=s$ for $s \in \mathbb{Z}$ and $[s]_{-}=j$, $[s]_{+}=j+1$ for $s \in (j, j+1)$ with $j \in \mathbb{Z}$.

THEOREM 1. Let C be a compact strictly convex subset of \mathbb{R}^n with C^2 boundary S. For some $h \in \mathbb{R}$, $H^{-1}(h) = S$ and $H'(z) \neq 0$ for any $z \in S$.

Assume further that there exist $r, R \in \mathbb{R}^+$ and $k \in \mathbb{Z}$, $2 \leq k \leq n$, with

$$(0.1) R < \sqrt{k} r$$

such that

$$(0.2)$$
 $rB \subset C \subset RB$,

Received September 26, 1984