Токуо J. Матн. Vol. 9, No. 1, 1986

Superficial Saturation

Tetsuo WATANABE

The National Defence Academy (Communicated by Y. Kawada)

Introduction

Let A be a Cohen-Macaulay semi-local ring of dimension d, I an ideal of definition of A and $P(I, t) = \sum_{n>0}^{\infty} \lambda(I^n/I^{n+1})t^n$ the associated Poincaré series where $\lambda()$ denotes the length of A-module. Then P(I, t) is the form $e_0(1-t)^{-d} - e_1(1-t)^{1-d} + \cdots + (-1)^{d-1}e_{d-1}(1-t)^{-1} + (-1)^d e_d^{(0)} + (-1)^d e_d^$ of $(-1)^d e_d^{(1)} t + \cdots + (-1)^d e_d^{(r)} t^r$. The coefficients e_k $(0 \leq k \leq d)$ are the so called normalized Hilbert-Samuel coefficients of I with $e_d = e_d^{(0)} + e_d^{(1)} + \cdots + e_d^{(r)}$. Since $\sum_{i=0}^{k} {d+i-1 \choose i} = {k+d \choose d}$, the Hilbert-Samuel function $\lambda(A/I^{n+1})$ of Iequals $e_0 {n+d \choose d} - e_1 {n+d-1 \choose d-1} + \dots + (-1)^{d-1} e_{d-1} {n+1 \choose 1} + (-1)^d e_d$ for each n > r. We say that $e_0(1-t)^{-d} + \cdots + (-1)^{d-1}e_{d-1}(1-t)^{-1}$ and $(-1)^d(e_d^{(0)} + \cdots + (-1)^{d-1}e_{d-1}(1-t)^{-1})$ $e_a^{(1)}t + \cdots + e_a^{(r)}t^r$) are respectively the principal part and the polynomial part of the Poincaré series. In this paper we assume that A/P is infinite for each maximal ideal P, which guarantees the existence of superficial elements. A superficial element x of I is said to be stable if $I^n: x = I^{n-1}$ for all n > 1. We say that a sequence of d elements x_1, \dots, x_d of I is an *I*-superficial (resp. a stable *I*-superficial) sequence, if $x_k \mod (x_1, \cdots, x_{k-1})$ is a (resp. stable) superficial element of $I/(x_1, \dots, x_{k-1})$ for each k $(1 \leq k \leq d)$. For an *I*-superficial sequence x_1, \dots, x_d , there exists m > 0 such that $(x_1, \dots, x_d)I^m = I^{m+1}$. We evaluate m in section 1.

Now in case d=1, I is said to be stable if it satisfies one of the following equivalent conditions.

(i) $\lambda(A/I^n)$ is a polynomial in *n* for all n>0.

(ii) $xI=I^2$ for some x in I.

(iii) P(I, t) is of the form $e_0(1-t)^{-1}-e_1$ (see [6]).

In the case of dimension d>1, the theory of stable ideals can be extended in two directions. One is about the ideals such that $(x_1, \dots, x_d)I=I^2$ for some x_1, \dots, x_d in I. The other is about the ideals satisfying the above Received October 13, 1984