Токуо Ј. Матн. Vol. 14, No. 1, 1991

Finite Type Hypersurfaces of a Sphere

Yasuyuki NAGATOMO

Tokyo Metropolitan University (Communicated by M. Ishida)

§1. Introduction.

Let M be an *n*-dimensional compact submanifold of an *m*-dimensional Euclidean space \mathbb{R}^m and Δ the Laplacian of M (with respect to the induced metric) acting on smooth functions on M. We denote by x the position vector of M in \mathbb{R}^m . Then we have the following spectral decomposition of x;

(1.1)
$$x = x_0 + \sum_{t \ge 1} x_t \qquad \Delta x_t = \lambda_t x_t \qquad (\text{in } L^2 \text{-sense}).$$

If there are exactly k nonzero x_t 's $(t \ge 1)$ in the decomposition (1.1), then the submanifold M is said to be of k-type. Here x_0 in (1.1) is exactly the center of mass in \mathbb{R}^m . A submanifold M of a hypersphere S^{m-1} of \mathbb{R}^m is said to be mass-symmetric in S^{m-1} if the center of mass of M in \mathbb{R}^m is the center of the hypersphere S^{m-1} in \mathbb{R}^m .

In terms of these notions, a well-known result of Takahashi (cf. [6]) says that a submanifold M in \mathbb{R}^m is of 1-type if and only if M is a minimal submanifold of a hypersphere S^{m-1} of \mathbb{R}^m . Furthermore, a minimal submanifold of a hypersphere S^{m-1} in \mathbb{R}^m is mass-symmetric in S^{m-1} . On the other hand, in [3], mass-symmetric, 2-type hypersurfaces of S^{m-1} are characterized. In [1], it is proved that a compact 2-type surface in S^3 is mass-symmetric.

In this paper, we will show that many 2-type hypersurfaces of a hypersphere S^{n+1} are mass-symmetric and that mass-symmetric, 2-type hypersurfaces of S^{n+1} have no umbilic point. More precisely, we will prove the following.

THEOREM 1. Let $x: M \to S^{n+1}$ be a compact hypersurface of a hypersphere S^{n+1} in \mathbb{R}^{n+2} . If M is of 2-type (i.e., $x = x_0 + x_p + x_q$) and

$$(\lambda_p + \lambda_q) - \frac{9n+16}{(3n+2)^2} \lambda_p \lambda_q \ge n^{\prime},$$

then M is mass-symmetric (i.e., $x_0 = 0$).

Received May 15, 1990