Токуо Ј. Матн. Vol. 17, No. 2, 1994

Determinant Surfaces of Rank 2 Bundles on P^3

Shigeharu TAKAYAMA

Tokyo Metropolitan University (Communicated by M. Sakai)

§1. Introduction.

The aim of this paper is to study the relationship between stable vector bundles \mathscr{E} of rank two on \mathbb{P}^3 and their determinant surfaces S determined by two sections of \mathscr{E} . We discuss specifically the case $c_1(\mathscr{E}) = 4$ in detail.

Vector bundles on a variety are closely related to its special subvarieties. On P^3 , a general surface has Picard number one by the Noether-Lefschetz theorem (cf. [Lo]): If S is a general surface of degree $d \ge 4$ in P^3 , then Pic $S \cong \mathbb{Z}$ with the generator $\mathcal{O}_S(1)$. On the other hand, a smooth determinant surface S is not general because its Picard number is at least two by Theorem 3.1:

THEOREM 1.1. A smooth surface S in \mathbb{P}^3 occurs as a determinant surface of a rank two vector bundle \mathscr{E} on \mathbb{P}^3 if and only if S has a surjective morphism onto \mathbb{P}^1 .

In this paper we give an estimate of $\rho(S)$ from below in terms of the behaviour of \mathscr{E} under the restriction to lines and planes. Defining the jumping planes in (5.5), we can state a sufficient condition for S to have Picard number ≥ 3 in (5.6). Moreover we have the following estimate:

THEOREM 1.2. Let \mathscr{E} be a stable vector bundle of rank two on \mathbb{P}^3 with $c_1(\mathscr{E}) = 4$ and $c_2(\mathscr{E}) \ge 9$. Suppose that \mathscr{E} has a smooth determinant surface S and that $c_2(\mathscr{E})/(h^1(\mathscr{E}(-4))+1) = (degree of a fibre of the Stein factorization of the morphism <math>S \to \mathbb{P}^1$ as in Theorem 1.1) ≥ 4 . Then

$$\rho(S) \ge 2 + \frac{1}{2} \# J(\mathscr{E}) ,$$

where $\# J(\mathscr{E})$ is the number of jumping planes for \mathscr{E} .

As a corollary of these theorems and (2.13), we have:

COROLLARY 1.3. For any given $c_2 \ge 5$, there exists a stable vector bundle \mathscr{E} of rank

Received February 9, 1993 Revised July 6, 1993