Determinant Surfaces of Rank 2 Bundles on $\boldsymbol{P}^{\mathbf{3}}$

Shigeharu TAKAYAMA
Tokyo Metropolitan University
(Communicated by M. Sakai)

§ 1. Introduction.

The aim of this paper is to study the relationship between stable vector bundles \mathscr{E} of rank two on P^{3} and their determinant surfaces S determined by two sections of \mathscr{E}. We discuss specifically the case $c_{1}(\mathscr{E})=4$ in detail.

Vector bundles on a variety are closely related to its special subvarieties. On $\boldsymbol{P}^{\mathbf{3}}$, a general surface has Picard number one by the Noether-Lefschetz theorem (cf. [Lo]): If S is a general surface of degree $d \geq 4$ in P^{3}, then $\operatorname{Pic} S \cong Z$ with the generator $\mathcal{O}_{S}(1)$. On the other hand, a smooth determinant surface S is not general because its Picard number is at least two by Theorem 3.1:

ThEOREM 1.1. A smooth surface S in \boldsymbol{P}^{3} occurs as a determinant surface of a rank two vector bundle \mathscr{E} on $\boldsymbol{P}^{\mathbf{3}}$ if and only if S has a surjective morphism onto $\boldsymbol{P}^{\mathbf{1}}$.

In this paper we give an estimate of $\rho(S)$ from below in terms of the behaviour of \mathscr{E} under the restriction to lines and planes. Defining the jumping planes in (5.5), we can state a sufficient condition for S to have Picard number ≥ 3 in (5.6). Moreover we have the following estimate:

Theorem 1.2. Let \mathscr{E} be a stable vector bundle of rank two on P^{3} with $c_{1}(\mathscr{E})=4$ and $c_{2}(\mathscr{E}) \geq 9$. Suppose that \mathscr{E} has a smooth determinant surface S and that $c_{2}(\mathscr{E}) /\left(h^{1}(\mathscr{E}(-4))+1\right)=\left(\right.$ degree of a fibre of the Stein factorization of the morphism $S \rightarrow \boldsymbol{P}^{1}$ as in Theorem 1.1) ≥ 4. Then

$$
\rho(S) \geq 2+\frac{1}{2} \# J(\mathscr{E}),
$$

where $\# \mathrm{~J}(\mathscr{E})$ is the number of jumping planes for \mathscr{E}.
As a corollary of these theorems and (2.13), we have:
Corollary 1.3. For any given $c_{2} \geq 5$, there exists a stable vector bundle \dot{E} of rank

[^0]Revised July 6, 1993

[^0]: Received February 9, 1993

