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Introduction.

The purpose of this note is to study compact and weakly compact homomorphisms
between algebras of continuous functions. For a completely regular Hausdorff space
$S$, we denote by $C(S)$ the algebra of all complex-valued continuous functions on $S$

endowed with its compact-open topology. M. Lindstr\"om and J. Llavana [4] gave
characterizations of compact and weakly compact homomorphisms from $C(S)$ to $C(T)$ ,
where $T$ and $S$ are completely regular Hausdorff spaces. Let $A$ and $B$ be closed
subalgebras of $C(S)$ and $C(T)$ respectively. Here we study compact and weakly compact
homomorphisms $\varphi$ from $A$ to $B$ .

After some preliminaries in \S 1, we introduce in \S 2 closed subalgebras of some type
which are called function algebras induced by uniform algebras. These subalgebras
contain $C(S)$ and algebras of analytic functions. We discuss in \S 2 compactness and
weak compactness of $\varphi$ in the case $A$ is a function algebra induced by a uniform algebra
and $\varphi$ is a composition operator. We give conditions under $\varphi$ is compact or weakly
compact and establish the relationship between compactness and weak compactness of $\varphi$ .

\S 1. Preliminaries.

For a completely regular Hausdorff space $X$, we denote by $C(X)$ the algebra of all
complex-valued continuous functions on $X$ endowed with its compact-open topology.
Throughout this note we let $S$ and $T$ denote completely regular Hausdorff spaces.

Let $A$ and $B$ be subalgebras of $C(S)$ and $C(T)$ respectively. Then we easily have
the following (cf. [6], [8]).

(a) Let $\varphi$ be a continuous linear operator from $A$ to $B$ . Then there is a continuous
mapping $\tau$ from $T$ to the dual space $A^{\prime}$ of $A$ with respect to the $w^{*}$-topology $\sigma(A^{\prime}, A)$

such that

$(*)$ $[\varphi(f)](y)=\tau(y)(f)$ , $f\in A$ and $y\in T$ .

(b) Let $\varphi$ be a continuous homomorphism from $A$ to $B$ . Then there is a continuous
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