Direct Sum Decomposition of the Integers

Yuji ITO

Keio University

§1. Introduction.

In this paper we shall be concerned with the direct sum decomposition $\boldsymbol{Z}=A \oplus B$ of the set \boldsymbol{Z} of all integers, where both subsets A and B are infinite subsets. Recently, a very interesting connection between such a decomposition of \boldsymbol{Z} (and of \boldsymbol{N}) and properties of infinite measure preserving ergodic transformations was discovered, and exploiting this connection, a number of significant results have been obtained characterizing the nature of the summands that appear in such a decomposition, see [2], [3], [4] and [5].

While it is well-known and is not difficult to characterize the infinite subsets that appear as direct summands of the decomposition $N=A \oplus B$, see, for example [1], [6], the situation is very different for the case of the direct sum decomposition of \boldsymbol{Z}, where it seems to be very difficult to give a reasonable characterization of summands in general, see Proposition 2.2 below. On the other hand, if one fixes one of the summands of such a decomposition to be a "reasonable set" in some sense, then one can give some interesting characterizations for infinite subsets of \boldsymbol{Z} that can be a complement of this set in the decomposition of \boldsymbol{Z}. If we let the set A to be one of the sets that appear as a direct summand of the decomposition of N, for example, it follows from the known result mentioned above that there exists a unique subset B such that $N=A \oplus B$ and it is not difficult to show that for this $B, A \oplus(-B)=\boldsymbol{Z}$ holds, and furthermore, one can construct by starting with this B many other complements of A in \boldsymbol{Z}, see Proposition 2.3 below. In fact, in [3] and [4], it was shown by using ergodic theory that such a set A always has uncountably many distinct complements in \boldsymbol{Z}, some of which can be of very different nature from those described in Proposition 2.3.

So, in this paper, we shall take A to be one of the sets that can appear as a direct summand of the decomposition of N; in fact, for the sake of simplicity, we take A to be the simplest of such sets, namely, let A consist of 0 and all finite sums of distinct odd powers of 2 , and give a characterization of sets C that can appear as a complement of this A in the direct sum decomposition of \boldsymbol{Z}. For this set A, S. Eigen, A. Hajian and

