The Decomposability of Z_{2}-Manifolds in Cut-and-Paste Equivalence

Katsuhiro KOMIYA

Yamaguchi University
(Communicated by T. Kawasaki)

Introduction

All manifolds considered here are unoriented compact smooth manifolds with or without boundary. G denotes a finite abelian group, and G-manifolds mean manifolds with smooth G-action.

Let $m \geq 0$ be an integer. Let P and Q be m-dimensional compact G-manifolds with boundary, and $\varphi: \partial P \rightarrow \partial Q$ be a G-diffeomorphism. Pasting P and Q along the boundary by φ, we obtain a closed G-manifold $P \cup_{\varphi} Q$ after rounding a corner. If $\psi: \partial P \rightarrow \partial Q$ is a second G-diffeomorphism, we obtain a second closed G-manifold $P \cup_{\psi} Q$. The two closed G-manifolds $P \cup_{\varphi} Q$ and $P \cup_{\psi} Q$ are said to be obtained from each other by cutting and pasting (Schneiden und Kleben in German). Two m-dimensional closed G-manifolds M and N are said to be cut-and-paste equivalent, or $S K$-equivalent to each other, if there is an m dimensional closed G-manifold L such that the disjoint union $M+L$ is obtained from $N+L$ by a finite sequence of cuttings and pastings. This is an equivalence relation on \mathfrak{M}_{m}^{G}, the set of m-dimensional closed G-manifolds. Denote by [M] the equivalence class represented by M, and by $\mathfrak{M}_{m}^{G} / S K$ the quotient set of \mathfrak{M}_{m}^{G} by the $S K$-equivalence. $\mathfrak{M}_{m}^{G} / S K$ becomes a semigroup with the addition induced from the disjoint union of G-manifolds. The Grothendieck group of $\mathfrak{M}_{m}^{G} / S K$ is called the $S K$-group of m-dimensional closed G-manifolds and is denoted by $S K_{m}^{G}$. The direct sum $S K_{*}^{G}=\bigoplus_{m \geq 0} S K_{m}^{G}$ becomes a graded ring with multiplication induced from cartesian product, with diagonal G-action, of G-manifolds.

In Komiya [13] we dealt with the case in which G is of odd order, and obtained a necessary and sufficient condition for that, for a given $u \in S K_{m}^{G}$ and an integer $t \geq 0, u$ is divisible by t, i.e., $u=t v$ for some $v \in S K_{m}^{G}$.

In the present paper we will deal with the case of $G=\boldsymbol{Z}_{2}$, the cyclic group of order 2. Using a result in Komiya [12], we will obtain a condition for a closed \boldsymbol{Z}_{2}-manifold M to decompose in the sense of $S K$-equivalence into the product $N \times L$ of two closed \boldsymbol{Z}_{2}-manifolds N and L. In fact, for given $u \in S K_{m}^{\boldsymbol{Z}_{2}}$ and $v \in S K_{n}^{\boldsymbol{Z}_{2}}$ with $n \leq m$, we will obtain a necessary

