Токуо J. Матн. Vol. 30, No. 2, 2007

The Decomposability of Z₂-Manifolds in Cut-and-Paste Equivalence

Katsuhiro KOMIYA

Yamaguchi University

(Communicated by T. Kawasaki)

Introduction

All manifolds considered here are unoriented compact smooth manifolds with or without boundary. G denotes a finite abelian group, and G-manifolds mean manifolds with smooth G-action.

Let $m \ge 0$ be an integer. Let P and Q be m-dimensional compact G-manifolds with boundary, and $\varphi : \partial P \to \partial Q$ be a G-diffeomorphism. Pasting P and Q along the boundary by φ , we obtain a closed G-manifold $P \cup_{\varphi} Q$ after rounding a corner. If $\psi : \partial P \to \partial Q$ is a second G-diffeomorphism, we obtain a second closed G-manifold $P \cup_{\psi} Q$. The two closed G-manifolds $P \cup_{\varphi} Q$ and $P \cup_{\psi} Q$ are said to be *obtained from each other by cutting and pasting* (Schneiden und Kleben in German). Two m-dimensional closed G-manifolds M and N are said to be *cut-and-paste equivalent*, or SK-equivalent to each other, if there is an mdimensional closed G-manifold L such that the disjoint union M + L is obtained from N + Lby a finite sequence of cuttings and pastings. This is an equivalence relation on \mathfrak{M}_m^G , the set of m-dimensional closed G-manifolds. Denote by [M] the equivalence class represented by M, and by \mathfrak{M}_m^G/SK the quotient set of \mathfrak{M}_m^G by the SK-equivalence. \mathfrak{M}_m^G/SK becomes a semigroup with the addition induced from the disjoint union of G-manifolds. The Grothendieck group of \mathfrak{M}_m^G/SK is called the SK-group of m-dimensional closed G-manifolds and is denoted by SK_m^G . The direct sum $SK_*^G = \bigoplus_{m \ge 0} SK_m^G$ becomes a graded ring with multiplication induced from cartesian product, with diagonal G-action, of G-manifolds.

In Komiya [13] we dealt with the case in which G is of odd order, and obtained a necessary and sufficient condition for that, for a given $u \in SK_m^G$ and an integer $t \ge 0$, u is divisible by t, i.e., u = tv for some $v \in SK_m^G$.

In the present paper we will deal with the case of $G = \mathbb{Z}_2$, the cyclic group of order 2. Using a result in Komiya [12], we will obtain a condition for a closed \mathbb{Z}_2 -manifold M to decompose in the sense of SK-equivalence into the product $N \times L$ of two closed \mathbb{Z}_2 -manifolds N and L. In fact, for given $u \in SK_m^{\mathbb{Z}_2}$ and $v \in SK_n^{\mathbb{Z}_2}$ with $n \leq m$, we will obtain a necessary

Received December 1, 2005; revised March 2, 2006