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1. Introduction. Let N =1 and p > 1. Let
F be a compact set and £ be a bounded open set
of R satisfying FC Q C R". We also set
2 = 2\ 0F, where 0F = F\ F and F denotes
the interior of F. Define
(1.1) P=—divA(x) V),
where A(z) € C'(R’) is positive in 2\ F and
vanishes in F. First we shall consider removable
singularities of solutions for degenerate semi-
linear elliptic equations. Assume that # € c’
(R) N C*R\F) satisfies
(1.2) Pu + B(x)Qu) = f(x), in 27,
for f/B € L”(8). Here Q(u) is a nonlinear term
defined in the section 2. Then we shall show the
existence of a bounded solution in £ which coin-
cides with # in 2 = 2\ 0F. This result was
established by H. Brezis and L. Veron in [2],
under the assumptions that F consists of finite
points, Q (¢) = ¢/’ 't and A(z), B(z), C(z)
are positive constants. (see also [5]). In this paper
we generalize their results for an arbitrary com-
pact set F in place of finite set and for a wider
class of (degenerate) elliptic operators P.
Secondly as an application, we shall consider
the Dirichlet boundary problem for genuinely de-
generate semilinear elliptic operators:
(1.3) {Pu+B(x)Q(u) = f(x), in 2,

' u =0, on 0.
Then we shall establish the existence and unique-
ness of bounded solutions # for this problem.
When P is uniformly elliptic on £, this problem
has been treated by many authors. But the de-
velopment of the theory seems to be rather limit-
ted in the study of genuinely degenerate oper-
ators.
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2. Main results and applications. Let N =
1. Let F and £ be a compact set and bounded
open subset of R" respectively, satisfying F C
2, and set Q' = 2\ OF. Here OF is defined as
oF = F\ﬁ In the next we define a modified dis-
tance to OF.
Definition 1. Let d(x) € C”(£2’) be a non-
negative function satisfying
-1 d(x)
@1 €< Fitz, op = €
07d(2)| < C(dist(x, oF)' ™", z € @',
where C and C (7) are positive numbers inde-
pendent of each point x.
We suppose the following four assumptions :
[H-1] (Coefficients).

A(z) € C'(Q) N L, (2),
(2.2) [A(x) =0in F = F\oF,
A(z) >0in Q\F,
B(zx) € L3.(Q) N L,,.(2),
B(x) > 0in 2 = Q\0F,
Clz) € L3.(2) N L, .(),
C(x) =20in L.
[H-2] (Nonlinear term).
(2.3) { Q1) is monotone increasing and continuous on R
' such that @(0) =0 and Q(#)¢ > 0 for any t €R\ {0}.
Definition 2. Let us set for x € 2’ = 2\
oF
(2.4) A(x) = A(z) + d(x)|VA(2)],
A
O(x) = €SS-SUP |,y <4 —Bgz;
[H-3]. There is a positive number d, > 0 such
that

143,
(2.5) sup T0COT < + oo, Super-linearlity.
ter\{0} Q1)
and )
.1 - D(x) \3
(2.6) llrenltnf z j;<d(x)<sA(x)[(d(x)2>
+1 ]——dzii) < + oo,



