On the Diophantine Equation $2^{a} X^{4}+2^{b} Y^{4}=2^{c} Z^{4}$

By Yasutaka SUZUKI
Department of Mathematics, Faculty of Education, Niigata University
(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1996)

1. Introduction. In this paper, an integer means a rational integer. The greatest common divisor of the integers a and b is denoted by (a, b). We shall prove the following main theorems.

Theorem 1. Let a, b, c be non-negative integers. If X, Y, Z is a solution of the equation

$$
2^{a} X^{4}+2^{b} Y^{4}=2^{c} Z^{4}
$$

in positive odd integers, then

$$
X=Y=Z \text { and } a+1=b+1=c
$$

Theorem 2. Let m be a non-negative integer. Then the equation

$$
X^{4}+2^{m} Y^{2}=Z^{4}
$$

has no solutions in nonzero integers X, Y, Z.
2. Preliminaries. We remind first the following three theorems which are all well-known (see [1], [2] or [3]).

Theorem 3. Let X, Y, Z be a solution of the equation

$$
X^{2}+Y^{2}=Z^{2}
$$

with positive integers X, Y, Z such that (X, Y) $=1$ and X odd. Then there exist unique positive integers u and v of opposite parity with $(u, v)=1$ and $u>v>0$ such that

$$
\begin{aligned}
& X=u^{2}-v^{2} \\
& Y=2 u v \\
& Z=u^{2}+v^{2}
\end{aligned}
$$

Theorem 4. The equation

$$
X^{4}+Y^{4}=Z^{2}
$$

has no solutions in nonzero integers X, Y, Z.
Theorem 5. The equation

$$
X^{4}+Y^{2}=Z^{4}
$$

has no solutions in nonzero integers X, Y, Z.
3. On the equation $X^{4}+2^{m} Y^{4}=Z^{4}$

In this section, we shall give a simple proof of the following theorem which is slightly stronger than, and implies Fermat's last theorem for $n=4$ (see [4]).

Theorem 6. Let m be a non-negative integer. Then the equation

$$
X^{4}+2^{m} Y^{4}=Z^{4}
$$

has no solutions in odd integers X, Y, Z.

Proof. Suppose that u is the least integer for which

$$
x^{4}+2^{m} y^{4}=u^{4}
$$

has a solution in positive odd integers x, y, u for some non-negative integer m. The statement that u is least immediately implies that three integers x, y, u are pairwise relatively prime. Since the fourth power of an odd integer is congruent to 1 modulo 16 , we have

$$
2^{m} y^{4}=u^{4}-x^{4} \equiv 1-1=0(\bmod 16)
$$

Then $m>3$. Since u and x are both odd and relatively prime, we have

$$
u^{2}+x^{2} \equiv 2(\bmod 4)
$$

and

$$
\begin{gathered}
\left(u^{2}+x^{2}, u+x\right)=\left(u^{2}+x^{2}, u-x\right) \\
=(u+x, u-x)=2
\end{gathered}
$$

And since

$$
2^{m} y^{4}=u^{4}-x^{4}=(u-x)(u+x)\left(u^{2}+x^{2}\right)
$$

there exist positive odd integers a, b, c such that

$$
u-x=2 a^{4}, u+x=2^{m-2} b^{4}, u^{2}+x^{2}=2 c^{4}
$$

or

$$
u-x=2^{m-2} b^{4}, u+x=2 a^{4}, u^{2}+x^{2}=2 c^{4}
$$

Hence

$$
\begin{gathered}
4 c^{4}=2\left(u^{2}+x^{2}\right)=(u-x)^{2}+(u+x)^{2} \\
=4 a^{8}+2^{2 m-4} b^{8}
\end{gathered}
$$

and so we obtain

$$
\left(a^{2}\right)^{4}+2^{2 m-6}\left(b^{2}\right)^{4}=c^{4}
$$

in positive odd integers a, b, c.
Moreover, since $0<x<u$, we have c^{4} $<2 c^{4}=u^{2}+x^{2}<2 u^{2}<u^{4}$ and so $0<c<u$. Thus u was not least after all and the theorem is proved.

4. Proofs of the main theorems.

Lemma 7. Let X, Y, Z be a solution of the equation

$$
X^{4}+Y^{4}=2 Z^{2}
$$

in non-negative integers. Then

$$
X^{2}=Y^{2}=Z
$$

Proof. Let X, Y, Z be a solution of the equation $X^{4}+Y^{4}=2 Z^{2}$ in non-negative integers. If one of X, Y and Z is zero, then $X=Y$ $=Z=0$. Thus, we suppose that X, Y and Z are

