$$\widetilde{Tr}_{H}(k) \qquad \stackrel{\widetilde{\tau}}{\longrightarrow} \qquad C_{+}(k)$$

$$(4.3) \qquad \qquad \swarrow$$

$$\tilde{\mathcal{E}}_{H}(k)$$

where  $\tau: Tr_H(k) \to C_+(k)$  is given by (4.4)  $\tau(t) = (\tan(A/2), \tan(B/2), \tan(C/2))$ . All other notation in (4.3) should be self-explanatory and the proof goes similarly as before.

**Examples and comments.** When k = Q, elements of  $Tr_H(Q)$  are called "rational triangles" or "Heron triangles" ([1] Chap. V). Heron of Alexandria noted that t = (13, 14, 15) belongs to  $Tr_H(Q)$  with  $\Delta = 84$ . By our map (4.4) it corresponds to the point (1/2, 4/7, 2/3) of the quadric  $C_+(Q)$ . On the other hand, by our map (1.6) it corresponds to the point (1/4, 16/49, 4/9) of the quartic  $S_+(Q)$ .

Obviously, every right triangle t=(a, b, c)  $\in Tr(k)$  belongs to  $Tr_H(k)$ . Assume that  $C=\pi/2$ ; hence  $a^2+b^2=c^2$ . Then  $\tau(t)=(a/(b+c),b/(a+c),1)$  and  $\theta(t)=(a^2/(b+c)^2,b^2/(a+c)^2,1)$ . In both cases the image of right triangles with  $C=\pi/2$  is the intersection of the surface in  $k_+^3$  and the plane z=1 (or w=1).

Needless to say, all equilateral triangles t=(a, a, a),  $a \in k_+$ , are similar and so they correspond to a single point in the quartic surface. If k does not contain  $3^{\frac{1}{2}}$ , then  $t \notin Tr_H(k)$  because  $\Delta_t = (3^{\frac{1}{2}}/4)a$ .

**§5.** An involution. For  $t = (a, b, c) \in Tr(k)$ , put

(5.1) 
$$t' = (a', b', c')$$
 with  $a' = a(s - a)$ ,  
 $b' = b(s - b)$ ,  $c' = c(s - c)$ ,  $s = \frac{1}{2}(a + b + c)$ .

Then one finds

(5.2) 
$$s' - a' = (s - b)(s - c), s' - b' = (s - c)$$
  
 $(s - a), s' - c' = (s - a)(s - b),$ 

with  $s' = \frac{1}{2} (a' + b' + c')$ . By (5.1), (5.2), we obtain a map:  $Tr(k) \rightarrow Tr(k)$ . Furthermore, for

the image t'' = (a'', b'', c'') of t' = (a', b', c'), we get

(5.3) 
$$a'' = a'(s' - a') = ad$$
,  $b'' = bd$ ,  $c'' = cd$ , with  $d = (s - a)(s - b)(s - c)$ .

In other words, we have  $t'' \sim t$  and so the map  $t \mapsto t'$  induces an involution \* of  $\widetilde{Tr}(k)$ . The only fixed point of \* is the class of equilateral triangle. By the diagram (2.5), we can transplant \* on  $S_+(k)$  and  $\widetilde{\mathscr{E}}(k)$ . On the surface  $S_+(k)$ , the involution  $P = (x, y, z) \mapsto P = (x^*, y^*, z^*)$  is determined by the relation:

determined by the relation:  
(5.4) 
$$xx^* = yy^* = zz^* = (xyz)/(x(yz)^{\frac{1}{2}} + y(zx)^{\frac{1}{2}} + z(xy)^{\frac{1}{2}}).$$

**Example** (Heron). Let k = Q and  $t = (a, b, c) = (13, 14, 15) \in Tr(Q)$ . We have s = 21, s - a = 8, s - b = 7, s - c = 6,  $\Delta = (s(s - a)(s - b)(s - c))^{\frac{1}{2}} = 84$ , hence  $t \in Tr_H(Q)$ . Next, by (5.1), we have t' = (a', b', c') = (104, 98, 90), s' = 146 and  $(\Delta')^2 = 16482816 = 2^9 \cdot 3^2 \cdot 7^2 \cdot 73$ , which means that  $t' \notin Tr_H(Q)$ ; in other words, the involution \* of Tr(Q) does not respect the subset  $Tr_H(Q)$ . Passing to the surface  $S_+(Q)$ , we have

$$\theta(t) = (1/2^2, 2^4/7^2, 2^2/3^2) \theta(t)^* = (2^5/73, 7^3/(2.73), (2.3^2)/73).$$

As for triples of elliptic curves, denoting by [P, Q] for the curve of type (3.1), we have

$$E_{t} = (E_{a}, E_{b}, E_{c}) = ([126, -84^{2}], [99, ^{n}], [70, ^{n}]),$$

$$E_{t}^{*} = (E_{a'}, E_{b'}, E_{c'}) = ([3444, -2^{9} \cdot 3^{2} \cdot 7^{2} \cdot 73], [4656, ^{n}], [6160, ^{n}]).$$

## References

- Dickson, L. E.: History of the Theory of Numbers, vol. 2, Chelsea, New York (1971).
- [2] Ono, T.: Triangles and elliptic curves. I ~ VI. Proc. Japan Acad., 70A, 106-108(1994): 70A, 223-225 (1994); 70A, 311-314 (1994); 71A, 104-106 (1995); 71A, 137-139 (1995); 71A, 184-186 (1995).

I take this opportunity to make a correction to my paper (VI). On p. 186, in (4.6),  $x^3 + 4x^2 - 3x$  should read  $x^3 + 2x^2 - 3x$ .