12. On Contiguity Relations of the Confluent Hypergeometric Systems

By Hironobu Kimura,*) Yoshishige Haraoka, ${ }^{* *)}$ and Kyoichi Takano***)

(Communicated by Kiyosi ITÔ, M. J. A., Feb. 14, 1994)

Introduction. This paper concerns the contiguity relations for the confluent hypergeometric systems M_{λ} (CHG system, for short) defined on the space $Z_{r, n}$ of $r \times n$ complex matrices of maximum rank $r(<n)$. As for the definition of the CHG systems and notations employed in this paper, we adopt those of [7].

In [4], we gave a Lie algebra of contiguity operators (see Definition 2.1) in an explicit form. In the present paper, we show that the contiguity operators, obtained in [4], appear in a natural manner in connection with the root space decomposition of the Lie algebra $\operatorname{gl}_{n}(\boldsymbol{C})$ with respect to the maximal abelian subalgebra $\mathfrak{G}=\operatorname{LieH}_{\lambda}$.

1. Root space decomposition. Let $H=H_{\lambda}=J\left(\lambda_{1}\right) \times \cdots \times J\left(\lambda_{l}\right)$ be a maximal abelian subgroup of $G L(n, \boldsymbol{C})$ corresponding to the composition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ of n, where $J\left(\lambda_{k}\right)$ be the Jordan group of size λ_{k}.

In the following, we often decompose an $n \times n$ matrix X into blocks according to the composition λ as

$$
X=\left(X_{i j}\right)_{1 \leq i, j \leq l},
$$

where $X_{i j}$ is a $\lambda_{i} \times \lambda_{j}$ matrix, which will be called (i, j)-block of X.
We denote by \mathfrak{G} the Lie algebra of H, which is given by

$$
\mathfrak{h}=\left\{h=\bigoplus_{i=1}^{l} h^{(i)} ; \quad h^{(i)}=\sum_{k=0}^{\lambda_{i}-1} h_{k}^{(i)} \Lambda_{\lambda_{i}}^{k}, h_{k}^{(i)} \in \boldsymbol{C}\right\}
$$

and is a maximal abelian subalgebra of $\mathfrak{g l}_{n}=\mathfrak{g l}_{n}(\boldsymbol{C})$. The dual space of \mathfrak{h} is denoted by \mathfrak{h}^{*}. For any $h \in \mathfrak{h}$, we consider an endmorphism ad $h: \mathfrak{g l}_{n}, \rightarrow \mathfrak{g l}_{n}$ defined by

$$
(a d h) X:=[h, X]=h X-X h .
$$

We say that a non zero element $\beta \in \mathfrak{h}^{*}$ is a root for \mathfrak{G} if the vector space

$$
\mathrm{g}_{\beta}:=\left\{X \in \mathrm{gl}_{n} ;(a d h-\beta(h)) X=0 \text { for all } h \in \mathfrak{h}\right\}
$$

is of dimension greater than or equal to 1 . The vector space g_{β} will be called the root subspace. Note that $\mathfrak{g}_{0}=\mathfrak{h}$.

Let $\beta_{j}(j=1, \ldots, l)$ be an element of \mathfrak{h}^{*} which sends the matrix $\oplus_{k=1}^{l}\left(\sum_{i=0}^{\lambda_{k}-1} h_{i}^{(k)} \Lambda_{\lambda_{k}}^{i}\right)$ to the common diagonal element $h_{0}^{(j)}$ of (j, j)-block. We see that the set Δ of non zero roots for \mathfrak{h} is given by

$$
\Delta=\left\{\beta_{i}-\beta_{j} ; i, j=1, \ldots, l, i \neq j\right\}
$$

Proposition 1.1. For any root $\beta_{i}-\beta_{j} \in \Delta$,

$$
\mathrm{g}_{\beta_{i}-\beta_{j}}=\boldsymbol{C} X_{\beta_{i}-\beta_{j}}
$$

[^0]
[^0]: *) Department of Mathematical Sciences, University of Tokyo.
 Department of Mathematics, Kumamoto University.
 Department of Mathematics, Kobe University.

