12. On Contiguity Relations of the Confluent Hypergeometric Systems

By Hironobu KIMURA,*) Yoshishige HARAOKA,**) and Kyoichi TAKANO***)

(Communicated by Kiyosi ITÔ, M. J. A., Feb. 14, 1994)

Introduction. This paper concerns the contiguity relations for the confluent hypergeometric systems M_{λ} (CHG system, for short) defined on the space $Z_{r,n}$ of $r \times n$ complex matrices of maximum rank r (< n). As for the definition of the CHG systems and notations employed in this paper, we adopt those of [7].

In [4], we gave a Lie algebra of contiguity operators (see Definition 2.1) in an explicit form. In the present paper, we show that the contiguity operators, obtained in [4], appear in a natural manner in connection with the root space decomposition of the Lie algebra $\mathfrak{gl}_n(C)$ with respect to the maximal abelian subalgebra $\mathfrak{h} = LieH_{\lambda}$.

1. Root space decomposition. Let $H = H_{\lambda} = J(\lambda_1) \times \cdots \times J(\lambda_l)$ be a maximal abelian subgroup of GL(n, C) corresponding to the composition $\lambda = (\lambda_1, \dots, \lambda_l)$ of n, where $J(\lambda_k)$ be the Jordan group of size λ_k .

In the following, we often decompose an $n \times n$ matrix X into blocks according to the composition λ as

$$X = (X_{ij})_{1 \le i,j \le l}$$

where X_{ij} is a $\lambda_i \times \lambda_j$ matrix, which will be called (i, j)-block of X.

We denote by \mathfrak{h} the Lie algebra of H, which is given by

$$\mathfrak{h} = \left\{ h = \bigoplus_{i=1}^{l} h^{(i)}; \quad h^{(i)} = \sum_{k=0}^{\lambda_i-1} h^{(i)}_k \Lambda^k_{\lambda_i}, \ h^{(i)}_k \in C \right\}$$

and is a maximal abelian subalgebra of $\mathfrak{gl}_n = \mathfrak{gl}_n(\mathbb{C})$. The dual space of \mathfrak{h} is denoted by \mathfrak{h}^* . For any $h \in \mathfrak{h}$, we consider an endmorphism $ad \ h : \mathfrak{gl}_n \to \mathfrak{gl}_n$ defined by

$$(ad h)X := [h, X] = hX - Xh$$

We say that a non zero element $\beta \in \mathfrak{h}^*$ is a *root* for \mathfrak{h} if the vector space $\mathfrak{g}_{\beta} := \{X \in \mathfrak{gl}_n; (ad h - \beta(h))X = 0 \text{ for all } h \in \mathfrak{h}\}$

is of dimension greater than or equal to 1. The vector space g_{β} will be called the *root subspace*. Note that $g_0 = \mathfrak{h}$.

Let β_j (j = 1, ..., l) be an element of \mathfrak{h}^* which sends the matrix $\bigoplus_{k=1}^{l} (\sum_{i=0}^{\lambda_k-1} h_i^{(k)} \Lambda_{\lambda_k}^i)$ to the common diagonal element $h_0^{(j)}$ of (j, j)-block. We see that the set Δ of non zero roots for \mathfrak{h} is given by

$$\Delta = \{\beta_i - \beta_j; i, j = 1, \dots, l, i \neq j\}$$

Proposition 1.1. For any root $\beta_i - \beta_j \in \Delta$,
 $g_{\beta_i - \beta_j} = C X_{\beta_i - \beta_j}$,

^{*)} Department of Mathematical Sciences, University of Tokyo.

^{**)} Department of Mathematics, Kumamoto University.

^(**) Department of Mathematics, Kobe University.