11. Higher Specht Polynomials for the Symmetric Group

By Tomohide TERASOMA and Hirofumi YAMADA

Department of Mathematics, Tokyo Metropolitan University (Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1993)

§0. Introduction. We are concerning with constructing a basis of the S_n -module $H = \mathbf{Q}[x_1, \ldots, x_n]/(e_1, \ldots, e_n)$, where (e_1, \ldots, e_n) denotes the ideal generated by elementary symmetric polynomials $e_j = e_j (x_1, \ldots, x_n)$ for $j = 1, \ldots, n$.

Let $P = Q[x_1, \ldots, x_n]$ be the algebra of polynomials of n variables x_1, \ldots, x_n with rational coefficients, on which the symmetric group S_n acts by the permutation of the variables:

 $(\sigma f)(x_1,\ldots,x_n) = f(x_{\sigma(1)},\ldots,x_{\sigma(n)}) \quad (\sigma \in S_n).$

Let us denote by Λ the subalgebra of P consisting of the symmetric polynomials. Let $e_j(x_1, \ldots, x_n) = \sum_{1 \le i_1 < \cdots < i_j \le n} x_{i_1} \ldots x_{i_j}$ be the elementary symmetric polynomial of degree j and put $J_+ = (e_1, \ldots, e_n)$, an ideal generated by e_1, \ldots, e_n . The quotient algebra $H = P/J_+$ has a structure of an S_n -module. It is well known that the S_n -module H is isomorphic to the regular representation. In other words, every irreducible representation of S_n occurs in H with multiplicity equal to its dimension. We will give a combinatorial procedure to obtain a basis of each irreducible component of H.

For a Young diagram λ of *n* cells, one can construct an S_n -module $V(\lambda)$ as follows (cf. [5]). For a tableau *T* of shape λ put

$$\Delta_T = \prod_{\beta \ge 1} \Delta_T(\beta) \in P,$$

where $\Delta_T(\beta)$ is the product of differences $x_i - x_j$ for the pair $\{(i, j) ; i < j\}$ appearing in the β -th column in T. The polynomial Δ_T is called the Specht polynomial of T. The space $V(\lambda)$ spanned by all the Specht polynomials Δ_T for tableaux T of shape λ is naturally equipped with a structure of an S_n -module. It is well known that $V(\lambda)$ is irreducible for any Young diagram λ and has a basis $\{\Delta_T; T \text{ is a standard tableau of shape } \lambda\}$.

Our basis of H is parametrized by the pair of standard tableaux (S, T) of the same shape and turns out to be a natural generalization of these standard Specht polynomials. One finds a related topic in [1].

§1. Standard tableaux and their indices. Fix a Young diagram $\lambda = (\lambda_1, \ldots, \lambda_n) (\lambda_1 \ge \cdots \ge \lambda_n \ge 0)$ consisting of *n* cells. We often say that λ is a partition of *n* and write $\lambda \vdash n$. The set of tableaux (resp. standard tableaux) of shape λ is denoted by $Tab(\lambda)$ (resp. $STab(\lambda)$) (cf. [5]). For a standard tableau *S* of shape λ , one can associate the index tableau i(S) of the same shape in the following manner (cf. [2]). Define the word w(S) by reading *S* from the bottom to the top in consecutive columns, starting from the left. The number 1 in the word w(S) has index 0. If the number k in the word has index p, then k + 1 has index p or p + 1 according as it lies to