45. On Integrated Semigroups which are not Exponentially Bounded

By Isao MIYADERA,^{*)} Masashi OKUBO,^{**)} and Naoki TANAKA^{***)}

(Communicated by Kiyosi ITÔ, M. J. A., June 8, 1993)

1. Introduction. Recently, as a generalization of the notion of exponentially bounded *n*-times integrated semigroups, Hieber [4] introduced that of exponentially bounded α -times integrated semigroups for positive numbers α and obtained interesting results by using Laplace transform techniques. But there exist integrated semigroups which are not exponentially bounded (and do not have the Laplace transforms) (see [5]). It is interesting to study the theory of α -times integrated semigroups which are not necessarily exponentially bounded. In this direction, some results in the special case where α is a nonnegative integer are found in Tanaka and Okazawa [6] and Thieme [7].

In this paper we deal with α -times integrated semigroups which are not necessarily exponentially bounded on a Banach space X for $\alpha \ge 0$. It should be noted that Laplace transform techniques are not available in our case. In §2 we investigate the basic properties of an α -times integrated semigroup and its generator. In §3 we give a characterization of the generator of an α -times integrated semigroup in terms of the associated abstract Cauchy problem. Applying this characterization we prove in §4 the following: (I) (Perturbation Theorem) If A generates an *n*-times integrated semigroup and if $B \in B(X)$ and R(B) (the range of $B) \subset D(A^n)$ then A + B generates an *n*-times integrated semigroup. (II) (Adjoint Theorem) If A is the densely defined generator of an α -times integrated semigroup then the adjoint A^* of A generates a β -times integrated semigroup on the adjoint X^* of X for every $\beta > \alpha$. These extend [2, Corollary 3.5] and [4, Corollary 3.7]. The proofs of main results are sketched here, and the details will be published elsewhere.

2. α -times integrated semigroups. Let X be a Banach space with norm $\|\cdot\|$. We denote by B(X) the set of all bounded linear operators from X into itself. Generalizing [1, Definition 3.2] we introduce

Definition 2.1. Let α be a positive number. A family $\{U(t) : t \ge 0\}$ in B(X) is called an α -times integrated semigroup on X, if

(a₁) $U(\cdot)x : [0, \infty) \to X$ is continuous for every $x \in X$,

(a₂)
$$U(t) U(s) x = \frac{1}{\Gamma(\alpha)} \left(\int_{t}^{t+s} (t+s-r)^{\alpha-1} U(r) x dr - \int_{0}^{s} (t+s-r)^{\alpha-1} U(r) x dr \right)$$

for $x \in X$ and $t, s \ge 0$, where $\Gamma(\cdot)$ denotes the gamma function,

^{*)} Department of Mathematics, School of Education, Waseda University.

^{**)} Department of Mathematics, Nirasaki High School.

^{***)} Department of Mathematics, Faculty of Science, Okayama University.