4. Hasse's Norm Theorem for K_2

By Yoshihiro KOYA

Department of Mathematics, Tokyo Institute of Technology (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1993)

1. Introduction and definitions. In this note, we shall present a description of Galois groups of the quotient field of 2-dimensional local ring and Hasse principle for K_2 of such fields by using hypercohomology and Lichtenbaum's complex Z(2). This note is an announcement of author's doctor thesis [2].

Unless the contrary is explicitly stated, we shall employ the following notation throughout this paper: For a field K, K_s is a fixed separable closure of K. Let G be a group and M a G-module. We denote M^G by $\Gamma(G, M)$, which is viewed as a functor. The symbol $\mathbb{Z}(2)$ stands for Lichtenbaum's complex. For definitions and properties on Lichtenbaum's complex, see [3] and [4]. In this note we shall freely use the standard notations on complexes and objects in derived categories as in [3] and [4].

Let A be a two dimensional complete normal local ring whose residue field F is a finite field, K its quotient field and P the set of all prime ideals of A of height one. For each $\mathfrak{p} \in P$, let $A_{\mathfrak{p}}$ be the completion of the localization of A at \mathfrak{p} , $K_{\mathfrak{p}}$ its quotient field and $\kappa(\mathfrak{p})$ the residue field of $A_{\mathfrak{p}}$. Note that by [6], $K_{\mathfrak{p}}$ is a two dimensional local field and $\kappa(\mathfrak{p})$ is a local field in the usual sense.

We shall construct the complex which represents K_2 -idele class group, which is defined in [6]. We define first an auxiliary complex. Under the above notation, let $L_{\mathfrak{P}}$ be a finite unramified extension of $K_{\mathfrak{p}}$, where \mathfrak{P} is a prime above \mathfrak{p} . Then the complex $Q(L_{\mathfrak{P}})$ [1] is defined to be the mapping cone of the following morphism of complexes:

 $\tau_{\leq 2} \mathbf{R} \Gamma(H_{\mathfrak{p}}, \mathbf{Z}(2)) \to F(\mathfrak{p})^{\times}[-2],$ where $H_{\mathfrak{p}} = \operatorname{Gal}((K_s)_{\mathfrak{p}}/L_{\mathfrak{P}})$ and $F(\mathfrak{p})$ is the residue field of $L_{\mathfrak{P}}$.

We also define K_2 -idele complex. Let L be a finite extension of K. The complex I(L) is defined as follows. First we set

$$I^{s}(L) = \prod_{\mathfrak{p} \in \mathcal{L}} \tau_{\leq 2} \mathbf{R} \Gamma(H_{\mathfrak{p}}, \mathbf{Z}(2)) \times \prod_{\mathfrak{p} \in \mathcal{P}} Q(L_{\mathfrak{p}}),$$

for a finite subset S of $\stackrel{\mathfrak{p}\in S}{P}$ containing all the ramified primes in L/K. Then the I(L) is defined by

$$I(L) = \lim_{\stackrel{\longrightarrow}{s}} I^{s}(L).$$

The idele complex I_{κ} is defined as

$$I_{K} = \lim_{K \to K} I(L),$$

where the limit runs through all finite extensions of K.

Now we can define our K_2 -idele class complex. The complex C(L) is