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1. Introduction and definitions. In this note, we shall present a de-
scription of Galois groups of the quotient field of 2-dimensional local ring
and Hasse principle for Kz of such fields by using hypercohomology and
Lichtenbaum’s complex Z(2). This note is an announcement of author’s doc-
tor thesis [2].

Unless the contrary is explicitly stated, we shall employ the following

notation throughout this paper: For a field K, K is a fixed separable clo-
sure of K. Let G be a group and M a G-module. We denote Ma

by I"(G, M),
which is viewed as a functor. The symbol Z(2)stands for Lichtenbaum’s
complex. For definitions and properties on Lichtenbaum’s complex, see [3]
and [4]. In this note we shall freely use the standard notations on complexes
and objects in derived categories as in [3] and [4].

Let A be a two dimensional complete normal local ring whose residue
field F is a finite field, K its quotient field and P the set of all prime ideals
of A of height one. For each p P, let A be the completion of the localiza-
tion of A at p, Ko its quotient field and (p) the residue field of A. Note that
by [6], K is a two dimensional local field and (p) is a local field in the
usual sense.

We shall construct the complex which represents Kz-idele class group,
which is defined in [6]. We define first an auxiliary complex. Under the
above notation, let L be a finite unramified extension of Ko, where is a

prime above . Then the complex Q(L)[1] is defined to be the mapping
cone of the following morphism of complexes:

r2RI-’(Ho, Z(2)) F(p)[-- 21,
where H Gal((Ks),/L,) and F(p) is the residue field of L.

We also define K2-idele complex. Let L be a finite extension of K. The
complex I(L) is defined as follows. First we set

Is(L) II r2RF(H,Z(2)) x II Q(L),
PS PP-S

for a finite subset S of P containing all the ramified primes in L/K. Then
the I(L) is defined by

I(L) lirn Is (L).
S

The idele complex IK is defined as

I lim I(L),
L

where the limit runs through all finite extensions of K.
Now we can define our K.-idele class complex. The complex C(L) is


