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1. Introduction and main results. Let p, denote the nth prime number.
Let f be a polynomial with real coefficients, then it is known that the sequ-
ence {f(p,)},-, is uniformly distributed modulo one (u.d. mod 1) if and only
if f is an irrational polynomial, which means that the polynomial f(x) —
f(0) has one irrational coefficient at least. (cf. [3]). Furthermore, it is also
known that for any noninteger a € (0, ), the sequence {p,},_, is u.d. mod
1 (see e.g. [1], [6]).

On the other hand, Goto and Kano [2] investigated the log-like functions
f and obtained sufficient conditions on the function f for which the sequence
{f(P)}ry is u.d. mod 1. Unfortunately we could not underestand the proof
of main Theorem 2. In this paper we first modify Goto and Kano’s results
(see Theorems 1 and 2 below) and then give a new result (Theorem 3). The
proofs are given in Section 2. (Though our Theorem 1 is essentially the same
as Theorem 1 of [2], we give here a proof for completeness’ sake.)

Theorem 1. Let @ > 0 and let f : [a, ) — (0, ) be a differentiable
function. Assume that xf’(x) — © as £— ©© and that for sufficiently large
x, (log x) f'(x) is monotone in x. Further, assume that for some & > 0,
f(@) = 0((log x)°) as £— . Then the sequence {af (§,)};,-,, is u.d. mod 1,
where n, = mini{n : p, > a} and a is any nonzero real constant.

Theorem 2. Let @ > 0 and let f : [a, ) — (0, ) be a twice diffe-
rentiable function with f” > 0. Assume that xzf”(x) — 0 35 r— ° and
that for sufficiently large x, (log x)zf”(x) is nonincreasing in x. Further,
assume that for some € > 0, f(x) = o((log x)°) as x— . Then the sequ-
ence {af (p,)},-,, is ud. mod 1, where n, = min{n:p, > a} and a is any
nonzero real constant.

Theorem 3. Let @ > 0 and let f:[a, ) — (0, ) be a twice diffe-
rentiable function with f” > 0. Assume that xzf”(x) — — 00 35 x— °° and
that for sufficiently large x, both (log x)zf”(x) and x (log x)zf”(x) are
nondecreasing in . Further, assume that for some ¢ >0, f(x) =
0((log x)%) as £— ©. Then the sequence {af (p,)},.,, is u.d. mod 1, where
n, = min{n : p, > a} and « is any nonzero real constant.

Note that Theorem 2 is essentially concerned with a convex function f,
while Theorem 3 is concerned with a concave function f. Applying Theorem
3 to the function f(r) = (logx)® we obtain that the sequence
{(log p,)} ey is ud. mod 1 if & > 1.

2. The proofs. We first prove Theorem 3 and then prove Theorems 1



