72. An Additive Problem of Prime Numbers. III

By Akio Fujii
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 14, 1991)

§ 1. Let γ run over the imaginary parts of the zeros of the Riemann zeta function $\zeta(s)$. We assume the Riemann Hypothesis throughout this article. Here we are concerned with the value distribution of the bounded oscillating quantity $G(X)$ for $X \geq 1$ defined by

$$
G(X) \equiv \Re\left\{\sum_{r>0} \frac{X^{i \gamma}}{(1 / 2+i r)(3 / 2+i \gamma)}\right\}
$$

This function plays important roles in some problems in the analytic theory of numbers. We may recall two formulas involving $G(X)$. One is concerned with Goldbach's problem on average and the other is concerned with the prime number theorem on average.
(I) For $X>X_{0}$, we have

$$
\begin{aligned}
& \sum_{n \leq X}\left\{\sum_{m+k=n} \Lambda(m) \Lambda(k)-n \cdot \prod_{p \mid n}\left(1+\frac{1}{p-1}\right) \prod_{p \nmid n}\left(1-\frac{1}{(p-1)^{2}}\right)\right\} \\
& \quad=-4 X^{3 / 2} G(X)+O\left((X \log X)^{1+1 / 3}\right),
\end{aligned}
$$

where $\Lambda(n)$ is the von Mangoldt function.
(II) For $X \geq 1$, we have

$$
\begin{aligned}
\int_{0}^{x}\left(\sum_{n \leq y} \Lambda(n)-y\right) d y= & -2 X^{3 / 2} G(X)-X \log (2 \pi)+\log (2 \pi)+C_{0} \\
& -1-\left(6 / \pi^{2}\right) \zeta^{\prime}(2)-X \sum_{a=1}^{\infty}\left(X^{-2 a} / 2 a(2 a-1)\right),
\end{aligned}
$$

where C_{0} is the Euler constant.
(I) has been proved in the author's previous work [7]. (II) is known to hold without assuming any unproved hypothesis in the following form (cf. p. 52 and p. 74 of Edwards [5]). For $X \geq 1$,

$$
\int_{0}^{x}\left(\sum_{n \leq y} \Lambda(n)-y\right) d y=-\sum_{\substack{\zeta(\rho)=0 \\ 0<\pi(\rho)<1}} \frac{X^{\rho+1}}{\rho(\rho+1)}-X \sum_{a=1}^{\infty} \frac{X^{-2 a}}{2 a(2 a-1)}-\frac{\zeta^{\prime}}{\zeta}(0) X+\frac{\zeta^{\prime}}{\zeta}(-1) .
$$

In (II), $G(X)$ is the only oscillating part. However in (I), the remainder term has still another oscillating property connected with the distribution of the zeros of $\zeta(s)$ as has been seen in [6] and [7].

We notice that the formula (II) implies, for example, that

$$
G(1)=(1 / 2)\left(-(1 / 2)+C_{0}-\left(6 / \pi^{2}\right) \zeta^{\prime}(2)-\log 2\right)
$$

and

$$
G(2)=(1 / 4 \sqrt{2})\left(1-\log \pi+C_{0}-\left(6 / \pi^{2}\right) \zeta^{\prime}(2)+\log 2-(3 / 2) \log 3\right) .
$$

Generally, we have for $X>1$,

$$
\begin{aligned}
\mathrm{G}(X) & +\left(1 / 2 X^{3 / 2}\right)\left\{(X-1) \log \pi-C_{0}+\left(6 / \pi^{2}\right) \zeta^{\prime}(2)\right\}-\left(1 / 2 X^{3 / 2}\right)\left\{\left(X^{2} / 2\right)-1\right\} \\
= & -\left(1 / 2 X^{3 / 2}\right)\left\{(X-1) \log 2+\log A_{1}+(X-[X]) \log A_{2}\right. \\
& \left.-\log (1-(1 / X))+((X+1) / 2) \log \left(1-\left(1 / X^{2}\right)\right)\right\},
\end{aligned}
$$

