3. Remarks on the Stability of Certain Periodic Solutions of the Heat Convection Equations

By Kazuo Ōeda
General Education, Japan Women's University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1990)

§ 1. Introduction. Let $\Omega(t)$ be a time-dependent bounded space domain in R^{m} ($m=2$ or 3) whose boundary $\partial \Omega(t)$ consists of two components, namely, $\partial \Omega(t)=\Gamma_{0} \cup \Gamma(t)$. Here Γ_{0} is the inner boundary and $\Gamma(t)$ is the outer one. Moreover, these two boundaries do not intersect each other. We denote by K the compact set which is bounded by Γ_{0}. Let $u=u(x, t)$, $\theta=\theta(x, t)$ and $p=p(x, t)$ be the velocity of the viscous fluid, the temperature and the pressure, respectively. We consider the heat convection equation (HC) of Boussinesq approximation in $\hat{\Omega}=\underset{0<t<T}{ } \Omega(t) \times\{t\}$ with boundary conditions

$$
\begin{equation*}
\left.u\right|_{\partial \Omega(t)}=\beta(x, t),\left.\quad \theta\right|_{\Gamma_{0}}=T_{0}>0,\left.\quad \theta\right|_{\Gamma(t)}=0 \text { for any } t \in(0, T) \tag{1}
\end{equation*}
$$

In our previous paper [4], we have proven the unique existence of the time-periodic strong solution of (HC) with (1), provided the domain $\Omega(t)$ and the boundary data $\beta(x, t)$ both vary periodically with period T. The purpose of this paper is to show the asymptotic stability of the periodic solution which is obtained in [4].
§2. Assumptions and results. We make some assumptions:
(A1) For any fixed $t>0, \Gamma(t)$ and Γ_{0} are both simple closed curves (or surfaces) and also they are of class C^{3}.
(A2) $\quad \Gamma(t) \times\{t\}(0<t<T)$ changes smoothly (say, of class C^{4}) with respect to t. (See, Assumptions II and III in [4].)
(A3) $g(x)$ is a bounded and continuous vector function in $R^{m} \backslash$ int K.
(A4) $\beta(x, t)$ is sufficiently smooth in x and t. Moreover, it satisfies the following condition

$$
\int_{\partial \Omega(t)} \beta \cdot n d S=0
$$

where n is the outer normal vector to $\partial \Omega(t)$.
(A5) The domain $\Omega(t)$ and the function $\beta(x, t)$ vary periodically in t with period $T>0$, i.e., $\Omega(t+T)=\Omega(t), \beta(\cdot, t+T)=\beta(\cdot, t)$ for each $t>0$.

Since $\Omega(t)$ is bounded, there exists an open ball B_{1} with radius d such that $\overline{\Omega(t)} \subset B_{1}$. We put $B=B_{1} \backslash K$. We introduce a solenoidal periodic function b over B such that $b(x, t)=\beta(x, t)$ on $\partial \Omega(t)$ and an appropriate function $\bar{\theta}$ on $\Omega(t)$ with the same boundary values on $\partial \Omega(t)$ as θ.

We now set the periodicity condition

$$
\begin{equation*}
u(\cdot, 0)=u(\cdot, T) \quad \text { in } \Omega(0)=\Omega(T) \tag{2}
\end{equation*}
$$

and consider the periodic problem for (HC) with (1) and (2).

