73. A Uniqueness Set for Linear Partial Differential Operators with Real Coefficients

By Ryoko Wada
Hiroshima University

(Communicated by Shokichi Iyanaga, m. J. a., Nov. 9, 1990)

1. Introduction. Let d be a positive integer and $d \geqslant 2 . \mathcal{O}\left(C^{d}\right)$ denotes the space of holomorphic functions on C^{d}. Suppose P is an arbitrary irreducible homogeneous polynomial with real coefficients. For any complex number λ we put $\mathcal{O}_{\lambda}\left(C^{d}\right)=\left\{F \in \mathcal{O}\left(C^{d}\right) ;(P(D)-\lambda) F=0\right\}$. Let $\mathfrak{J}=\left\{z \in C^{d}\right.$; $P(z)=0\}$. The space $\mathcal{O}(\Re)$ of holomorphic functions on the analytic set \Re is equal to $\left.\mathcal{O}\left(C^{d}\right)\right|_{\Omega}$ by the Oka-Cartan theorem.

Consider the restriction mapping $\alpha_{\lambda}:\left.F \rightarrow F\right|_{\Re}$ of $\mathcal{O}_{2}\left(C^{d}\right)$ to $\mathcal{O}(\mathscr{I})$. In our previous paper [5] we showed that α_{2} is a linear isomorphism of $\mathcal{O}_{2}\left(C^{d}\right)$ onto $\mathcal{O}(\Re)$ when $P(z)=z_{1}^{2}+\cdots+z_{d}^{2}(d \geqslant 3)$. In this sense we called the cone $\left\{z \in C^{a} ; z_{1}^{2}+\cdots+z_{d}^{2}=0\right\}$ a uniqueness set for the differential operator $\sum_{j=1}^{d}\left(\partial / \partial z_{j}\right)^{2}+\lambda^{2}$ (for the case $P(z)=z_{1}^{2}+\cdots+z_{d}^{2}$, see also [4] and see [3] for more general polynomials of degree 2).

In this paper we will show that α_{λ} is a linear isomorphism of $\mathcal{O}_{\lambda}\left(C^{d}\right)$ onto $\mathcal{O}(\mathscr{l})$ for any $\lambda \in C$ if P is an arbitrary irreducible homogeneous polynomial with real coefficients.
2. Statement of the result and its proof. Let P be an arbitrary homogeneous polynomial and we define the polynomial P^{*} by $P^{*}(z)=\overline{P(\bar{z})}$ $(z \in \boldsymbol{C}) . \quad P\left(\boldsymbol{C}^{d}\right)$ denotes the space of polynomials on \boldsymbol{C}^{d} and $H_{k}\left(\boldsymbol{C}^{d}\right)$ denotes the space of homogeneous polynomials of degree k on C^{d}. We define the inner product \langle,$\rangle on P\left(C^{d}\right)$ by the following formula:

$$
\left\langle z^{\alpha}, z^{\beta}\right\rangle= \begin{cases}0 & (\alpha \neq \beta) \\ \alpha! & (\alpha=\beta) .\end{cases}
$$

We put $\mathscr{H}_{k}=\left\{\boldsymbol{F} \in H_{k}\left(C^{d}\right) ; P^{*}(D) F=0\right\}$ and $J_{k}=\left\{P \phi \in H_{k}\left(C^{d}\right) ; \phi\right.$ is some homogeneous polynomial on $\left.C^{d}\right\}$. The following lemma is known.

Lemma 2.1 ([1] and [2] Theorem 3). (i) For any nonnegative integer k we have $H_{k}\left(C^{d}\right)=\mathcal{H}_{k} \oplus J_{k}$ and $\mathcal{A}_{k} \perp J_{k}$ with respect to the inner product \langle,$\rangle .$
(ii) For any $\lambda \in C$ and any $F \in \mathcal{O}\left(C^{d}\right)$ there exist $H, G \in \mathcal{O}\left(C^{d}\right)$ uniquely such that

$$
\begin{equation*}
F=H+P G \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P^{*}(D)+\lambda\right) H=0 \tag{2.2}
\end{equation*}
$$

Suppose $F \in \mathcal{O}\left(C^{d}\right)$. Let $F(z)=\sum_{k=0}^{\infty} F_{k}(z)$ be the development of F in a series of homogeneous polynomials F_{k} of degree k. Then $\sum_{k=0}^{\infty} F_{k}$ converges

