73. A Uniqueness Set for Linear Partial Differential Operators with Real Coefficients

By Ryoko WADA Hiroshima University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 9, 1990)

1. Introduction. Let d be a positive integer and $d \ge 2$. $\mathcal{O}(\mathbf{C}^d)$ denotes the space of holomorphic functions on \mathbf{C}^a . Suppose P is an arbitrary irreducible homogeneous polynomial with real coefficients. For any complex number λ we put $\mathcal{O}_{\lambda}(\mathbf{C}^a) = \{F \in \mathcal{O}(\mathbf{C}^d); (P(D) - \lambda)F = 0\}$. Let $\mathcal{N} = \{z \in \mathbf{C}^d; P(z) = 0\}$. The space $\mathcal{O}(\mathcal{N})$ of holomorphic functions on the analytic set \mathcal{N} is equal to $\mathcal{O}(\mathbf{C}^d)|_{\mathcal{R}}$ by the Oka-Cartan theorem.

Consider the restriction mapping $\alpha_{\lambda}: F \to F|_{\mathfrak{N}}$ of $\mathcal{O}_{\lambda}(\mathbb{C}^d)$ to $\mathcal{O}(\mathfrak{N})$. In our previous paper [5] we showed that α_{λ} is a linear isomorphism of $\mathcal{O}_{\lambda}(\mathbb{C}^d)$ onto $\mathcal{O}(\mathfrak{N})$ when $P(z) = z_1^2 + \cdots + z_d^2$ ($d \ge 3$). In this sense we called the cone $\{z \in \mathbb{C}^d ; z_1^2 + \cdots + z_d^2 = 0\}$ a uniqueness set for the differential operator $\sum_{j=1}^d (\partial_j \partial z_j)^2 + \lambda^2$ (for the case $P(z) = z_1^2 + \cdots + z_d^2$, see also [4] and see [3] for more general polynomials of degree 2).

In this paper we will show that α_{λ} is a linear isomorphism of $\mathcal{O}_{\lambda}(\mathbb{C}^{d})$ onto $\mathcal{O}(\mathcal{N})$ for any $\lambda \in \mathbb{C}$ if P is an arbitrary irreducible homogeneous polynomial with real coefficients.

2. Statement of the result and its proof. Let P be an arbitrary homogeneous polynomial and we define the polynomial P^* by $P^*(z) = \overline{P(\overline{z})}$ $(z \in C)$. $P(C^d)$ denotes the space of polynomials on C^d and $H_k(C^d)$ denotes the space of homogeneous polynomials of degree k on C^d . We define the inner product \langle , \rangle on $P(C^d)$ by the following formula:

$$\langle z^{lpha}, z^{eta}
angle = egin{cases} 0 & (lpha
eq eta) \ lpha & ! & (lpha = eta). \end{cases}$$

We put $\mathcal{H}_k = \{F \in H_k(\mathbb{C}^d); P^*(D)F = 0\}$ and $J_k = \{P\phi \in H_k(\mathbb{C}^d); \phi \text{ is some homogeneous polynomial on } \mathbb{C}^d\}$. The following lemma is known.

Lemma 2.1 ([1] and [2] Theorem 3). (i) For any nonnegative integer k we have $H_k(C^d) = \mathcal{H}_k \oplus J_k$ and $\mathcal{H}_k \perp J_k$ with respect to the inner product \langle , \rangle .

(ii) For any $\lambda \in C$ and any $F \in \mathcal{O}(C^d)$ there exist $H, G \in \mathcal{O}(C^d)$ uniquely such that

(2.1) F = H + PG

and

(2.2)
$$(P^*(D) + \lambda)H = 0.$$

Suppose $F \in \mathcal{O}(C^d)$. Let $F(z) = \sum_{k=0}^{\infty} F_k(z)$ be the development of F in a series of homogeneous polynomials F_k of degree k. Then $\sum_{k=0}^{\infty} F_k$ converges